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However, short-term s;on11; , cChleeelf 1976; Seibert and Wetherbee,
with many P"«%<?^&XrSS^&ag« is already being used for1977; Withers, 3078). Rcirig te||| lantlets (Mullin and Schlegel,
the storage of Fra{jono . I•• j disadvantages that limit its useful-
1976), but tins metlK) M • , pcriodic replenishment (Mullin and Schle-
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818 Modifications and Applications

causing an increase in the gas exchange in the commodity (Lougheed et
al., 1976). Third, a continuous air exchange is used to flush away any
toxic vapors released into the storage area and last, high humidity pre
vents shrinkage, weight loss, and desiccation of the commodity (Anony
mous, 1975; Gaffney, 1978).

Previous work has indicated that low pressures may be a potentially
useful tool in the long-term storage of plant tissue cultures. It was
first shown that normally short-lived seeds such as onion, celery, and
cabbage exhibit increased germination after low-pressure storage when
compared to atmospheric storage (Lougheed et al., 1976). It was then
demonstrated that tomato plant growth was inhibited at low pressures
(Rule and Staby, 1981).

In addition to the potential for long-term storage, low pressures also
have the added advantage of reducing the activity of culture medium
pathogens in aseptic material (Covey and Wells, 1970). Spore germina
tion, mycelial growth, and sporulation of Penicillium digitatum, Alter-
naria alternata, Botrytis cinerea, Diplodia natalensis, and Sclerotinia
sclerotiorum are reduced under low pressures (Adair, 1971; Apelbaum
and Barkai-Golan, 1977). Subatmospheric pressures also have a fungi
static effect on Penicillium expansum, Rhizopus nigricans, Aspergillus
niger, Botrytis alii, and Alternaria sp. (Wu and Salunkhe, 1972).

Low-oxygen storage is the combination of different gases to create a
desired atmosphere at atmospheric pressure. Originally reported for
the storage of apples and pears under low oxygen and high carbon di
oxide, it is still being used in commercial operations for the storage of
various fruit crops (Dewey et al., 1969; Smock, 1979).

There are several theories as to why low-pressure storage and low-
oxygen storage delay senescence of horticultural crops. One theory is
that by decreasing the partial pressure of oxygen in the atmosphere,
the amount of CO2 evolved is also reduced (Kessel and Carr, 1972;
Parkinson et al., 1974; Siegel, 1961), and with the low temperatures,
respiration is decreased. In addition senescence may also be delayed
in low-pressure storage because of the continuous flow of air which
flushes away toxic gases such as ethylene that may accumulate (Gam-
borg and LaRue, 1971; LaRue and Gamborg, 1971).

Most growth studies of plants with oxygen have been related to the
measurements of oxygen uptake of CO2 release in the light. This has
allowed the proposal of several theories explaining why low oxygen has
an effect on plants growing in vivo. Researchers now know that pho
tosynthesis is increased as 02 in the atmosphere is reduced (Forrester
et al., 1965; Hesketh, 1967; Ludwig and Canvin, 1971; Servaites and
Ogren, 1978; Takabe and Akazawa, 1977) by a direct inhibitory effect
of O2 on the RuBP carboxylase of the photosynthetic carbon cycle
(Challet and Ogren, 1975). It is also possible that photorespiration de
creases as the partial pressure of oxygen is lowered (Ehleringer and
Bjorkman, 1977; Forrester et al., 1965; Tregunva et al., 1964). This
would inhibit CO2 production and possibly stimulate C02 fixation (Tjep-
kema and Yocum, 1973; Yentur and Leopold, 1976). Hesketh (1967)
found that both the increase in photosynthesis and the decrease in pho
torespiration are dependent upon species and temperature. Since O2 is
necessary for opening and closing of stomates, as was shown with

". • V-,-,' • •. :
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Figure 2. Increase in height of chrysanthemum plants after 6 weeks in
storage. S.E. = 1.71.

Table 3. Visual Rating System for Evaluating Tissue Responses

RATING

1

2

3

4

5

VISUAL DESCRIPTION

*0.5 cm high, *6 leaves
0.5-1.0 cm high, 6-10 leaves
1.0-3.0 cm high, 10-15 leaves
^3.0 cm high, *15 leaves
Culture bottle completely filled; could not

calculate without opening the bottle

system described in Table 3 was used to express results. Growth
trends were similar to those observed for the chrysanthemums; as the
POz was reduced, the rate of growth decreased. SimUarly, the lower
the P02, the greater the reduction in growth (Table 4). Medium desic
cation was observed in this experiment after 2 weeks only wjth tne
LPS treatment which was held at 40 mm Hg. This caused the plantiets
to dehydrate in 5056 of the bottles and prevented growth measurements
of one replication. . . ioea •_

Tobacco callus growth was evaluated by measuring the increase in
height, width, and length to estimate volume increase (em') from tne
initial 125 mm3 masses (Figs. 3 and 4). The growth curves for the
callus tissue were similar to differentiated chrysanthemum and tobacco
tissue; however, differences among treatments were mor%.^denl-
Growth decreased as the PO2 was lowered, and there was no difference
between LPS and LOS at similar P02.

Protocols of Low-Pressure I
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Table 4. Visual Rating of Tobacco Shoots after 6 Weeks in Storage

TREATMENT

Atmospheric Pressure (mm Hg) P02 (mm Hg) Rating

760

760

300

760

150

760

40

152.0

48.6

60.8

26.6

30.4

9.1

8.0

Value represents data from only 1 replication.

5

OXYGEN PARTIAL PR ESSU RES (mm HG):
m***-*. ,52.0

54.0
28.1

8.4

* s * * s

3.46

2.97

2.93

2.34

1.92

1.74

1.291
S.E. = 0.83

/.„
=-:

2 4

TIME (weeks!

Figure 3. Tobacco callus volume increase after low-oxygen storage for
2, 4, and 6 weeks.

One-third of the chrysanthemum and tobacco plantlets were grown to
flowering following each 6 week experiment. To do this plantlets were
noo transferred onto MS medium supplemented with 1.1 iiM IAA and
0.93 nM KIN. Then after 4 weeks these plantlets were potted up in a
Metro Mix 200 soil formula and placed in the greenhouse under misting
and long days. After 2 weeks plants were grown under standard
greenhouse conditions. Little difference was noticed between the
treatments flowering, growth habits, and final heights (Tables 5 and 6).

•••

Qordori
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OXYGEN PARTIAL PRESSURES (mm HG):

E

* 5

6

* 4
Z

* 3

o
>

*wsm*M 152.0

'**** 60.8
• ••••- 30.4

•r^vo'y'^ 8.0

^<"
r .I1

1 - jf i'

2 4

TIME (weeks)

Figure 4. Tobacco callus volume increase after low-pressure storage
for 2, 4, and 6 weeks. S.E. = 2.55.

Table 5. Average Height, after 40 Days in the Greenhouse, of Chrys
anthemum Plants Which Were Previously Stored for 6 Weeks
Under Low Oxygen and Low Pressure Conditions

*"*

TREATMENT

Atmospheric Pressure (mm Hg) P02 (mm Hg) Height (cm)

760

760

300

760

150

760

70

?S.E. = Standard error.

PROTOCOLS

152.0

54.0

60.8

28.1

30.4

8.4

8.0

32.7

27.0

35.2

32.4

29.7

32.3

27.7

S.E. = 2.961

In Bridgen and StabyTs experiments (1981), the plant material was
prepared in the following manner. Chrysanthemum plants were grown

Protocols of Low-Pressure l
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Table 6. Average Height, after 150 Days in the Greenhouse, of
Tobacco Plants Which Were Previously Stored for 6 Weeks
Under Low Oxygen and Low Pressure Conditions

TREATMENT

Atmospheric Pressure (mm Hg) P02 (mm Hg) Height (cm)

760

760

300

760

150

760

40

152.0 49.25

48.6 47.75

60.8 50.00

26.6 44.50

30.4 40.30

9.1 52.75

8.0 48.00

S.E. = 4.041

2S.E. = Standard error.

under greenhouse conditions with 16 hr days, and pinched when they
reached a height of 15.0 cm. Lateral bud breaks were then removed,
soaked in 1.05% sodium hypochlorite for 15 min, rinsed in 50% ethanol
for 1 min, and then allowed to remain in 0.26% sodium hypochlorite
until ready to culture. These lateral, vegetative buds were placed in
vitro and used as stock plants. Each experiment commenced with 5.0
mm shoot tips removed from the stock plants. Tobacco stock cultures
were obtained from existing cultures.

All cultures were grown in 30 ml French square glass bottles on a
modified MS medium supplemented with 0.11 |iM IAA and 0.93 hM KIN
for chrysanthemum sections, 1.1 pM IAA and 0.93 jiM KIN for tobacco
shoots, and 4.5 nM 2,4-D and 100 ml/1 CW for tobacco callus. Culture
medium was sterilized using a steam pressure autoclave at 121 C for
12-15 min. Immediately before each experiment, each bottle cap was
completely unscrewed and set on top of the bottles to allow adequate
moisture exchange.

All experiments were performed in a randomized block design, with
each treatment being replicated twice and with 16 bottles of plantlets
per treatment. The plant material in each experiment was grown at
uniform conditions under 26-28 C with 16 hr daylengths and 2.0-2.2
kilolux light intensity supplied by cool-white fluorescent lights. Each
treatment was maintained in a 10 liter desiccator which was placed in
side a clear polyethylene bag. The desiccators were scrubbed in 1.05%
sodium hypochlorite before the onset of each experiment.

All low-pressure systems were run from a Precision Scientific Model
75 vacuum pump which pulled the air through potassium permanganate
filters to remove various hydrocarbons including ethylene (Scott et al.,
1970), then through Matheson Model 49 pressure regulators to air flow
meters and a water bath, before reaching the desiccators (Fig. 5a). A
relative humidity of 94-96% was maintained by passing the atmospheres
through the water bath which consisted of 1 liter side-arm Erlenmeyer
flasks filled with 850 ml of distilled water. The temperature of this
water was raised 3 C above room temperature to allow maximum humi-

•.wh»»;^^^;ff,'g!g^v^:;.TO?^^^
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Figure 5. Schematic of low pressure (a), controlled atmosphere (b) andatmospheric pressure systems (c). «»p«ere id;, and

dity in the chamber (Gaffney, 1978). The gas flow rates of all treat
ments were monitored daily along with the pressures of each LPS
treatment which were estimated with a mercury manometer,
t^n^ atmosphere systems were comprised of various combina
tions of oxygen and nitrogen, which were humidified to 60-72% by but
wer! obtJn'ffh^011^/. <*** °f Water <"* 5b)' Gas concentration!»Zt fTi by mamtaining constant pressures of each gas and by
£2?£"!».*?* °rjilT .°f di£ferent sizes t0 contro1 ^e percentage ofeach gas that was entering the system. Gas composition of the atmos-
!™nh oT measured on a Packer thermal conductivity gas chromato-
graph at an oven temperature of 100 C and an injector and detector
temperature of 170 C. A 3 mm x 90 cm stainless steel column w£
packed with a 5 A 60/80 mesh molecular sieve for 02 and N2. IniUa>
ly, each experiment had 3 ml gas samples evacuated for daily analysis;
however, after an atmosphere was established, samples were tested

Controls were set up at atmospheric pressures and atmospheric oxy
gen concentrations at a relative humidity of approximately 94-96%
created by the same system as described for the low pressures. All
air was pulled through a potassium permanganate filter and air flows
were maintained by a Universal 1.3 amp air pump (Fig. 5c).
^Contamination in each experiment was never greater than 10% after

the 6 week period. This was due in part to the low-oxygen environ
ments, but also due to the fairly aseptic conditions that were main
tained.
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