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Protocols of Low-Pressure Storage
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LITERATURE REVIEW
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However, short-term StOFage by low temperatures (4 C) is successful
with mn,ny plants (Mullin and Schlegel, 1976; Seibert and Wetherbcfee,
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the :storagc of Iragaria spp. meristem plantlets (Mullin and Schlegjll,
1976), but this method has several disadvantages that limit its useful-
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causing an increase in the gas exchange in the commodity (Lougheed et
al., 1976). Third, a continuous air exchange is used to flush away any
toxie vapors released into the storage area and last, high humidity pre-
vents shrinkage, weight loss, and desiccation of the commodity (Anony-
mous, 1975; Gaffney, 1978).

Previous work has indicated that low pressures may be a potentially
useful tool in the long-term storage of plant tissue cultures. It was
first shown that normally short-lived seeds such as onion, celery, and
cabbage exhibit increased germination after low-pressure storage when
compared to atmospheric storage (Lougheed et al., 1976). It was then
demonstrated that tomato plant growth was inhibited at low pressures
(Rule and Staby, 1981).

In addition to the potential for long-term storage, low pressures also
have the added advantage of reducing the activity of culture medium
pathogens in aseptic material (Covey and Wells, 1970). Spore germina-
tion, mycelial growth, and sporulation of Penicillium digitatum, Alter-
naria alternata, Botrytis cinerea, Diplodia natalensis, and Sclerotinia
sclerotiorum are reduced under low pressures (Adair, 1971; Apelbaum
and Barkai-Golan, 1977). Subatmospheric pressures also have a fungi-
static effeet on Penicillium expansum, Rhizopus nigricans, Aspergillus
niger, Botrytis alli, and Alternaria sp. (Wu and Salunkhe, 1972).

Low-oxygen storage is the combination of different gases to create a
desired atmosphere at atmospheric pressure. Originally reported for
the storage of apples and pears under low oxygen and high carbon di-
oxide, it is still being used in commercial operations for the storage of
various fruit crops (Dewey et al., 1969; Smock, 1979).

There are several theories as to why low-pressure storage and low-
oxygen storage delay senescence of horticultural crops. One theory is
that by decreasing the partial pressure of oxygen in the atmosphere,
the amount of CO; evolved is also reduced (Kessel and Carr, 1972;
Parkinson et al., 1974; Siegel, 1961), and with the low temperatures,
respiration is decreased. In addition senescence may also be delayed
in low-pressure storage because of the continuous flow of air which
flushes away toxic gases such as ethylene that may accumulate (Gam-
borg and LaRue, 1971; LaRue and Gamborg, 1971).

Most growth studies of plants with oxygen have been related to the
measurements of oxygen uptake of CO: release in the light. This has
allowed the proposal of several theories explaining why low oxygen has
an effect on plants growing in vivo. Researchers now know that pho-
tosynthesis is increased as O, in the atmosphere is reduced (Forrester
et al., 1965; Hesketh, 1967; Ludwig and Canvin, 1971; Servaites and
Ogren, 1978; Takabe and Akazawa, 1977) by a direct inhibitory effect
of O; on the RuBP carboxylase of the photosynthetic carbon cycle
(Challet and Ogren, 1975). It is also possible that photorespiration de-
creases as the partial pressure of oxygen is lowered (Ehleringer and
Bjorkman, 1977; Forrester et al., 1965; Tregunva et al., 1964). This
would inhibit CO2 production and possibly stimulate CO, fixation (Tjep-
kema and Yocum, 1973; Yentur and Leopold, 1976). Hesketh (1967)
found that both the increase in photosynthesis and the decrease in pho-
torespiration are dependent upon species and temperature. Since O; is
necessary for opening and closing of stomates, as was shown with
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Growth of chrysanthemum shoots w
(Table 2), height increases (Fig. 2),

2). Plantlet growth was not totally inhibited by any of the treatments
over the 6 week period; however, th

ere was a difference in the amount
of growth among treatments. Treatments having a partial pressure of
oxygen (PO;) of 50 mm Hg or higher were not different from the con-
trols after 6 weeks in storage. Growth of treatments less than 50 mm
Hg was less than the

8s measured by fresh weight gain
and total number of leaves (Table

e least over the g weeks, Plantlets

LPS at corresponding PO, had similap growth
patterns. )

Table 2, Average Fresh Weight Gain and Number of Leaves of
Chrysanthemums after Weeks in Storage

AVERAGE FRESH AVERAGE NUMBER

TREATMENT WT. GAIN (mg)2 OF LEAVESP

Atmospherie PO;
Pressure (mm Hg) (mm Hg)

760 152.0 383.3

7.58

760 54,0 316.6 6.56

300 60.8 325.0 7.50

760 28.1 151.6 5.78

150 30.4 £35.3 6.64

760 8.4 55.0 1.73

70 8.0 50.0 2.29
2S.E. = 0.01.
®S.E. = 1.81.

Growth of tobacco shoot tips was measured by counting the number

The visual rating

WRURET WY 1Y S e m - —
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Figure 2. Increase in height of chrysanthemum plants after 6 weeks in
storage. S.E. = L.71.

Table 3. Visual Rating System for Evaluating Tissue Responses

RATING VISUAL DESCRIPTION

0.5 em high, =6 leaves

0.5-1.0 em high, 6-10 leaves

1.0-3.0 em high, 10-15 leaves

23.0 em high, 215 leaves

Culture bottle completely filled; could not
calculate without opening the bottle

G b O DD

system described in Table 3 was used to express results, Growth
trends were similar to those observed for the chrysanthemums; as the
PO, was reduced, the rate of growth decreased. Similarly, the lower
the PO, the greater the reduction in growth (Table 4). Medium desic-
cation was observed in this experiment after 2 weeks only with the
LPS treatment which was held at 40 mm Hg. This caused the plantlets
to dehydrate in 50% of the bottles and prevented growth measurements
_ of one replication. .
' Tobaceo callus growth was evaluated by measuring the increase 1n
height, width, and length to estimate volume increase (em3) from the
initial 125 mm? masses (Figs. 3 and 4). The growth curves for the
callus tissue were similar to differentiated chrysanthemum and tobacco
tissue; however, differences among treatments were more .evxdent.
Growth decreased as the POz was lowered, and there was no difference

between LPS and LOS at similar PO,.
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Table 4. Visual Rating of Tobacco Shoots after 6 Weeks in Storage

TREATMENT

Atmospherie Pressure (mm Hg) PO, (mm Hg) Rating

760 152.0 3.46
760 48.6 2.97
300 60.8 2.93
760 26.6 2.34
150 30.4 1.92
760 9.1 1.74

40 8.0 1.291

S.E. = 0.83

"Value represents data from only 1 replication.
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Figure 3. Tobacco callus volume increase after low-oxygen storage for
2, 4, and 6 weeks.

One-third of the chrysanthemum and tobacco plantlets were grown to
flowering following each 6 week experiment. To do this plantlets were
first transferred onto MS medium supplemented with 1.1 puM IAA and
0.93 pM KIN. Then after 4 weeks these plantlets were potted up in a
Metro Mix 200 soil formula and placed in the greenhouse under misting
and long days. After 2 weeks plants were grown under standard
greenhouse conditions. Little difference was noticed between the
treatments flowering, growth habits, and final heights (Tables 5 and 6).

|
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Figure 4. Tobacco callus volume increase after low-pressure storage
for 2, 4, and 6 weeks. S.E. = 2.55.

Table 5. Average Height, after 40 Days in the Greenhouse, of Chrys-
anthemum Plants Which Were Previously Stored for 6 Weeks
Under Low Oxygen and Low Pressure Conditions

TREATMENT

Atmospheric Pressure (mm Hg) PO; (mm Hg) Height (cm)

760 152.0 32.7
760 54.0 27.0
300 60.8 35.2
760 28.1 32.4
150 ‘ 30.4 29,7
760 8.4 32.3
70 8.0 27,7
S.E. = 2.96!

1SE = Standard error.

PROTOCOLS

In Bridgen and Staby's experiments (1981), the plant material was
prepared in the following manner. Chrysanthemum plants were grown
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Table 6. Average Height, after 150 Days in the Greenhouse, of
Tobaceo Plants Which Were Previously Stored for 6 Weeks
Under Low Oxygen and Low Pressure Conditions

TREATMENT
Atmospheric Pressure (mm Hg) PO, (mm Hg) Height (cm)
760 152.0 49.25
760 48.6 ‘ 47.75
300 60.8 50,00
760 26.6 44.50
150 30.4 40.30
760 9.1 52.75
40 8.0 48.00
S.E. = 4,04!

!S.E. = Standard error.

under greenhouse conditions with 16 hr days, and pinched when they
reached a height of 15.0 em. Lateral bud breaks were then removed,
soaked in 1.05% sodium hypochlorite for 15 min, rinsed in 50% ethanol
for 1 min, and then allowed to remain in 0.26% sodium hypochlorite
until ready to culture. These lateral, vegetative buds were placed in
vitro and used as stoek plants. Each experiment commenced with 5.0
mm shoot tips removed from the stock plants. Tobacca stock cultures
were obtained from existing cultures.

All cultures were grown in 30 ml French square glass bottles on a
modified MS medium supplemented with 0.11 pM IAA and 0.93 pM KIN
for chrysanthemum sections, 1.1 pM IAA and 0.93 uM KIN for tobacco
shoots, and 4.5 pM 2,4-D and 100 ml/l CW for tobacco callus. Culture
medium was sterilized using a steam pressure autoclave at 121 C for
12-15 min. Immediately before each experiment, each bottle cap was
completely unscrewed and set on top of the bottles to allow adequate
moisture exchange. ,

All experiments were performed in a randomized block design, with
each treatment being replicated twice and with 16 bottles of plantlets
per treatment. The plant material in each experiment was grown at
uniform conditions under 26-28 C with 16 hr daylengths and 2.0-2.2
kilolux light intensity supplied by cool-white fluorescent lights. Each
treatment was maintained in a 10 liter desiccator which was placed in-
side a clear polyethylene bag. The desiccators were scrubbed in 1.05%
sodium hypochlorite before the onset of each experiment.

All low-pressure systems were run from a Precision Scientific Model
75 vacuum pump which pulled the air through potassium permanganate
filters to remove various hydrocarbons including ethylene (Scott et al.,
1970), then through Matheson Model 49 pressure regulators to air flow
meters and a water bath, before reaching the desiccators (Fig. 5a). A
relative humidity of 94-96% was maintained by passing the atmospheres
through the water bath which consisted of 1 liter side-arm Erlenmeyer
flasks filled with 850 ml of distilled water. The temperature of this
water was raised 3 C above room temperature to allow maximum humi-
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Figure 5. Schematie of low pressure (a), controlled atmosphere (b), and
atmospheric pressure systems (e).

dity in the chamber (Gaffney, 1978), The ges flow rates of all treat-
ments were monitored daily along with the pressures of each LPS
treatment which were estimated with a mercury manometer.

Controlled atmosphere systems were comprised of various combina-
tions of oxygen and nitrogen, which were humidified to 60-72% by bub-
bling the gases through a tank of water (Fig. 5b). Gas concentrations
were obtained by maintaining constant pressures of each gas and by
using glass tube orifices of different sizes to control the percentage of
each gas that was entering the system. Gas composition of the atmos-
phere was measured on a Packer thermal conductivity gas chromato-
graph at an oven temperature of 100 C and an injector and detector
temperature of 170 C. A 3 mm x 90 em stainless steel column was
packed with a 5 A 60/80 mesh molecular sieve for O, and N,. Initial-
ly, each experiment had 3 ml ges samples evacuated for daily analysis;
however, after an atmosphere was established, samples were tested
weekly.

Controls were set up at atmospheric pressures and atmospheric oxy-
gen concentrations at a relative humidity of approximately 94-96%
created by the same system as deseribed for the low pressures. All
air was pulled through a potassium permanganate filter and air flows
were maintained by a Universal 1.3 amp air pump (Fig. Sec).
i+ Contamination in each experiment was never greater than 10% after
the 6 week period. This was due in part to the low-oxygen environ-

ments, but also due to the fairly aseptic conditions that were main-
tained.
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FUTURE PROSPECTS

Although the tissue culture research with LPS and LOS has been
very successful to date, several aspects of the procedures should be
examined before commercial applications can be made. Of major con-

cern, particularly if these techniques were to be used for plant germ— .

plasm preservation, is the examination of long-term effects of low par-
tial pressures of oxygen on the plants. If these low PO, cause subtle
genotypic variations in the cultures, these systems may not be feasible.

An aspect of the LPS system that should be examined is the medium

desiccation at low pressures. This was exhibited in the tobacco shoot
tip experiments and somewhat in experiments with tomato root tips
grown in liquid medium (Bridgen, 1979). Medium desiceation for germ-
plasm preservation would limit the storage time of cultures and could
possibly be controlled by elevating the relative humidity within the
growth chamber or by decreasing the number of air exchanges per
hour.
Another aspect of LPS and LOS storage systems to be examined
would be the effects of C3 and Cs plants under the various PO2.
There may be additional advantages to storing Ca plants under the
low-oxygen conditions over C4 plants.

Comparisons should be made between the LPS and LOS systems to
determine which one is the easiest to use and the most economical.
The LOS system may be relatively costly on a large scale, whereas an
efficient vacuum pump in the LPS system would be less expensive.
Once set up, the LPS should be relatively easy to run and monitor.

These experiments and the theories backing them demonstrate that
partial pressures of oxygen below 50 mm Hg reduce the amount of both
organized and unorganized plant tissue growth. This can be accomp-
lished by using either LPS or LOS and does not create phenotypic
growth differences. With these facts in mind, it appears that these
techniques may be feasible to use in the future for plant tissue culture

germplasm banks.
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