Water pH and Soluble Salts Levels Affects Vase Life of Cut Callas, Hydrangeas and

Snapdragons

Iftikhar Ahmad, John Dole and Alicain Carlson North Carolina State University

Report Date: June 30, 2011 (2011-12 First and Final Report Funded by the Joseph H. Hill Memorial Foundation, Inc. ICFG-HILL, P.O. Box 99, Haslett, MI 48840 ICFG.HILL@yahoo.com

Summary

Water quality can have a significant impact on vase life and two of the most important characteristics of water are pH and electrical conductivity (EC), a measure of water's salinity. Cut flowers are usually placed in tap water, which can vary greatly in pH and EC. Callas were quite tolerant of high water EC and water pH. Vase life varied only from a low of 9.2 days for acidic solutions to a high of 10.1 days for neutral solutions. Increasing EC, low water pH and the use of floral preservatives increased hydrangea vase life. Increasing EC increased vase life from a low of 3.5 days to a high of 5.7 days at 4.0 dS/m in water and from a low of 7.3 days to a high of 15.4 days at 2.5 dS/m, when floral preservatives were used. For snapdragon, increasing EC and the use of floral preservatives increased vase life to a maximum of 9.7 days with 3.0 dS/m with floral preservatives and to 14.8 days with 2.0 dS/m with only water. Water pH had no statistical effect on snapdragon vase life. In summary, water EC for these three species should be approximately 2.0 dS/m, which is higher than most recommendations. Water pH should be low, as high pH solutions either had no effect or reduced vase life, such as with hydrangea.

Background and Literature Review

Many factors affect vase life in cut flower stems, including temperature, transpiration rates, microbial populations, sucrose levels, and so forth. Durkin (1979) states that solution uptake is a "central consideration in the longevity of cut flowers" and Conrado et al. (1980) describes it as the "limiting factor" for cut flower vase life. Durkin (1979) and Conrado et al. (1980) state that water pH and mineral content, among other variables, are key factors in solution uptake. Cut flowers are usually placed in tap water. Depending on its source, however, tap water can vary greatly in pH and EC (Gast, 2000).

Water with a low pH is taken up more easily by cut flowers than water with a higher pH. A pH of approximately 3.5 is considered most beneficial because it deters the growth of harmful microbes (Gast, 2000; Reid and Kofranek, 1980). Reduced microbe contamination leads to reduced stem plugging and increased vase life (Gast, 2000). Conrado et al. (1980) found that solution uptake increased with roses at a low pH (below 3) whereas, high pH (above 6) decreased uptake. Maximum vase life in their study was

achieved with a pH of 5, which is well below that of most untreated water sources. Durkin (1979) also found that acidifying solutions enhance hydration rates of rose peduncle tissue. Regan (2008, 2010) found that optimal vase life, averaging 13.2 days, for cut 'Freedom,' 'Charlotte,' and 'Classy' roses resulted from a low pH of 3.1 to 4.0. Solutions with an initial pH of 6.1 to 6.3 produced a vase life averaging 11.6 days and those with a pH of 7.3 to 8.2 produced a vase life averaging 9.8 days. A two-hour treatment in high pH solutions had no effect on vase life. Increasing pH was correlated with reduced water uptake.

Electrical conductivity (EC) estimates the amount of total dissolved salts/solids (TDS), or the total amount of dissolved ions in the water (salinity). The EPA's guideline for tap water stands at 500 mg·L⁻¹ total dissolved solids, which translates to 0.71 dS·m⁻¹. However, many water sources have higher levels: College Station, Texas at 0.75 dS·m⁻¹; San Diego, California at 0.82 dS·m⁻¹; and Madison, Wisconsin up to 0.93 dS·m⁻¹ (www.epa.gov). On the other hand, the tap water in Birmingham, Alabama has an EC of only 0.14 dS·m⁻¹ (www.epa.gov). Hard water containing calcium and magnesium is less harmful to vase life than softer water that contains a higher concentration of sodium ions; a low soluble salt content reduces interference with water uptake and can cause marginal necrosis of leaves and petals (Gast, 2000). The mineral salts reduce the effectiveness that preservatives have in lowering the pH of the vase solution (Gast, 2000). Salinity affects the vase life of flowers depending on the concentration and flower species. For example, gladiolus vase life starts to decrease at 1.0 dS·m⁻¹ (700 ppm), whereas carnations are harmed at 0.3 dS·m⁻¹ (200 ppm). Saline water may also harm leaves and stems.

Regan (2008, 2010) found that optimal vase life for cut 'Freedom,' 'Charlotte,' and 'Classy' roses resulted from EC of 1.0 to $1.3 \text{ dS} \cdot \text{m}^{-1}$. Two others salts, Na₂SO₄ and CaCl₂, produced a similar effect as NaCl. The addition of floral preservatives to the vase solution not only extended the vase life, but also partially overcame negative effects of high EC. In solutions where both initial pH and EC varied, initial pH accounted for 30 to 54% of variation in vase life (average 44%) and initial EC accounted for 18 to 48% of variation (average 36%). In all cases, final pH and EC were not as strongly correlated with vase life as initial pH and EC.

Objectives

The objectives of this project are to determine the optimal pH and EC for maximum calla, hydrangea and snapdragon vase life.

Methods

pH. Cut calla, hydrangea and snapdragon stems were received from commercial producers. Stems were held in water amended with one of the following buffer solutions: 1) bis-tris propane, 2) citrate only and 3) phosphate only. Each of the three buffers had an acidic, neutral and basic pH treatment, which was accomplished by amending the already basic buffer solutions with either HCl or H_2SO_4 . The acidic treatments were modified to a target pH of 3.0 to 3.4, the basic treatments to 7.7 to 8.3, and the neutral treatments to 6.1 to 6.4. Distilled water controls were included that were not amended with any chemical. Each treatment had five replications of three stems per vase, except

for snapdragon, which had five replications of 3 stems per vase and one replication of 2 stems per vase. Data collected included vase life, initial wet weight, termination fresh weight, water uptake, final solution pH and EC, and reasons for termination. Initial and final solution EC was also recorded.

EC. NaCl was be added to either DI water or DI water plus a holding preservative to create an EC of 0.25, 0.5, 0.75, 1.0, 2.0, 2.5, 3.0, or 4.0 dS·m⁻¹. DI water and DI water plus holding preservative controls were also used. Each treatment had five replications of three stems per vase. Data collected included vase life, initial wet weight, termination fresh weight, water uptake, and reasons for termination of each flower. Initial and final solution pH was also recorded.

Results and Discussion

<u>Calla</u>. Calla was quite tolerant of high water EC (Table 1). While EC had a statistically significant effect on calla vase life, it varied only by 1.5 days from a low of 8.9 to a high of 10.4 days. Interestingly, floral preservative had no effect on vase life; however, the use of preservatives increased water uptake, reduced water pH and EC change and reduced fresh weight change. Increasing EC increased water uptake and increased stem rolling after splitting from base.

Calla was also quite tolerant of water pH (Table 2). Vase life was statistically higher for neutral solutions, but varied only from a low of 9.2 days for acidic solutions to a high of 10.1 days for neutral solutions. The use of buffers increased stem rolling after splitting from base.

<u>Hydrangea</u>. Increasing EC increased vase life (Table 3). As with many cut flowers the use of floral preservatives greatly increased vase life from a low of 4.5 days for water to 10.6 days with preservative. Increasing EC increased vase life from a low of 3.5 days to a high of 5.7 days at 4.0 dS/m in water and from a low of 7.3 days to a high of 15.4 days at 2.5 dS/m, when floral preservatives were used. Increasing EC reduced water uptake and increased brown spots on petals and petal drying. The use of floral preservatives reduced bending of stems from just below inflorescence but increased petal drying and leaf wilting, the latter probably due to the longer vase life of the flowers in preservatives.

Hydrangea vase life was longest when acidic water was used and buffer had no effect (Table 4). Flowers in acidic solutions also had the highest incidence of brown spots on petals and leaf wilting, possibly due to longer vase life.

<u>Snapdragon</u>. Increasing EC increased vase life to a maximum of 9.7 days with 3.0 dS/m with floral preservatives and to 14.8 days with 2.0 dS/m with only water (Table 5). Regardless of the use of floral preservatives, once the maximum vase life was reached, increasing EC reduced vase life. The use of floral preservatives greatly increased vase life from a low of 7.7 days for water to 13.7 days with preservative. Increasing EC increased the incidence of floret drying, shedding and fading of florets. The use of floral preservatives increased the incidence of floret drying and fading, but reduced stem bending.

Water pH had no statistical effect on vase life or water uptake (Table 6). The use of buffers increased incidence of floret fading.

In summary, postharvest water EC for the three cut flower species tested should be approximately 2.0 dS/m, which is higher than most recommendations that call for "low" water EC. Water pH should be low, as high pH solutions either had no effect or reduced vase life, such as with hydrangea. Low water pH is the general recommendation for cut flowers, which is consistent with these studies. This work will decrease postharvest problems associated with cut flowers by providing growers, wholesalers and retailers with specific pH and EC recommendations for their water, which will alert them to when they need to modify the pH and/or EC of their water.

Literature Cited

- Conrado, L.L., R. Shanahan, and W. Eisinger. 1980. Effects of pH, osmolarity and oxygen on solution by cut rose flowers. J. Am. Soc. Hort. Sci. 105:680-683.
- Durkin, D. 1979. Effect of Millipore filtration, citric acid, and sucrose on peduncle water potential of cut rose flower. J. Am. Soc. Hort. Sci. 104:860-863.
- Gast, K.L.B. 2000. Water quality for florists-why is it so important. Kans. State Univ. Agr. Expt. Sta. Coop. Ext. Serv.
- Regan, E.M. 2008. Developing water quality and storage standards for cut Rosa stems and postharvest handling protocols for specialty cut flowers. NC State Univ., Raleigh, MS thesis.
- Regan, E.M. and J.M. Dole. 2010. Determining optimum pH and EC levels for extended vase life of cut *Rosa* 'Freedom', 'Charlotte', and 'Classy'. *Acta Hort*. 870:263-271.
- Reid, M.S. and A.M. Kofranek. 1980. Postharvest physiology of cut flowers. *Chronica Hort*. 20 (2): 25-27.

Table 1. The effect of vase solution EC and commercial holding solution (Floralife Professional) on vase life, water uptake, fresh weight, and stem rolling, and change in water pH, EC and fresh weight of calla 'Nicole Yellow'. Treatments with holding solution had an initial pH of 3.6. Treatments without holding solution had an initial pH of 5.3. Means are an average of 15 stems, except for main effect means, which were an average of 30 or 135 stems.

Holding	EC	Vase life	Change	Water	Change	Change	Stem
solution	(dS/m)	(d)	in fresh	uptake	in pH	in EC	rolling
			weight	(mL)	-	(dS/m)	(%) ^z
Yes	0.40	8.9 ab	-1.6 a	39 ab	-0.07 cde	0.04 gf	33 abc
	0.50	9 ab	- 2.9 a	36 abc	0.13 bc	0.08 gh	40 abc
	0.75	10.7 a	-2.1 a	36 ab	0.17 bc	0.1 gh	47 abc
	1.00	9.2 ab	-2.4 a	31 bcd	0.03 c	0.13 efg	20 abc
	2.00	8.7 b	-2.3 a	43 ab	0.02 c	0.26 cd	20 abc
	2.50	8.9 ab	-1.6 a	33 abcd	-0.03 cd	0.29 bc	27 abc
	3.00	9.6 ab	-1.7 a	50 a	-0.01 cd	0.41 ab	47 abc
	4.00	10 ab	-2.2 a	42 ab	-0.03 cd	0.5 a	67 a
No	0.00	9.6 ab	-2.02 a	30 bcd	-0.45 fg	0.02 gh	33 abc
	0.25	10 ab	-2.1 a	30 bcd	0.61 a	0.003 h	0 c
	0.50	9 ab	-2.5 a	36 ab	0.41 ab	0.01 gh	1 bc
	0.75	10.1 ab	-3.04 a	30 bcd	-0.3 def	0.05 gh	60 ab
	1.00	10.3 ab	-2.9 a	19 cd	-0.46 fg	0.14 defg	33 abc
	2.00	9.4 ab	-2.4 a	18 d	-0.09 cde	0.11 fgh	40 abc
	2.50	9.2 ab	-3.1 a	28 bcd	-0.62 g	0.23 cdef	33 abc
	3.00	10.4 ab	-2.2 a	26 bcd	-0.13 cde	0.24 cde	67 a
	4.00	10.1 ab	-3.3 a	30 bcd	-0.37 efg	0.31 bc	53 abc
			Main	effects			
Yes		9.4 b	-2.1 a	39 a	0.02 a	0.23 a	38 a
No		9.8 a	-2.6 b	27 b	-0.16 b	0.12 b	36 a
	0.00	9.6 ab	-2.02 a	30 ab	-0.45 e	0.02 f	33 ab
	0.25	10 ab	-2.1 a	30 ab	0.61 a	0.00 f	0 b
	0.41	8.9 b	-1.6 a	29 ab	-0.07 c	0.04 f	33 ab
	0.50	9 b	-2.7 a	36 ab	0.3 b	0.05 ef	23 ab
	0.75	10.4 a	-2.6 a	33 ab	-0.07 c	0.07 ef	53 a
	1.00	9.8 ab	-2.6 a	25 b	-0.22 cd	0.13 de	27 ab
	2.00	9.03 b	-2.3 a	30 ab	-0.03 c	0.19 de	30 ab
	2.50	9.1 b	-2.4 a	31 ab	-0.33 de	0.26 bc	30 ab
	3.00	10 ab	-2.0 a	38 a	-0.07 c	0.33 ab	57 a
	4.00	10.03 ab	-2.8 a	36 ab	-0.2 cd	0.4 a	60 a
			Signif	icance			
Holding		NS	0.0217	< 0.0001	< 0.0001	< 0.0001	NS
EC		0.0002	NS	0.0093	< 0.0001	< 0.0001	0.0004
Linear		NS	NS	NS	0.0002	< 0.0001	-
Quadratic		NS	NS	NS	NS	NS	-

Cubic	NS	0.0386	NS	NS	NS	-
Residual	0.0012	NS	0.0045	< 0.0001	NS	-
H*E	NS	NS	0.0011	< 0.0001	0.0011	NS
H*EL	NS	NS	0.0219	NS	0.0185	-
H*EQ	NS	NS	0.0124	NS	NS	-
H*EC	NS	NS	NS	0.00049	NS	-
H*ER	NS	NS	0.0096	0.0010	NS	-

NS=not significant. ^zPercentage of stems showing characteristic.

Table 2. The effect of vase solution pH and buffer on vase life, water uptake, and stem rolling, and change in water pH, EC and fresh weight of calla 'Nicole Yellow'. Treatments had an initial pH and EC of 3.3 and 0.44 dS/m (acidic), 6.4 and 0.25 dS/m (neutral) or 8.3 and 0.22 dS/m (basic). A control treatment of unaltered water was included, which had an initial pH and EC of 5.8 and 0.00 dS/m. Means are an average of 15 stems, except for main effect means, which were an average of 15, 45 or 60 stems.

Buffer	pH	Vase life	Change	Water	Change	Change	Stem
		(d)	in fresh	uptake	in pH	in EC	rolling
			weight	(mL)	_	(dS/m)	$(\%)^{z}$
No buffer	Unaltered	9.5 a	-1.92 ab	39 a	-0.37 cde	0.01 ab	7 a
	Acidic	8.5 a	-1.18 a	27 a	-0.08 bcd	-0.04 bcd	7 a
	Neutral	9.9 a	-1.70 a	23 a	-0.95 ef	0.01 ab	33 a
	Basic	9.0 a	-2.30 ab	29 a	0.06 bc	0.01 ab	20 a
Bis-tris	Acidic	9.8 a	-2.02 ab	29 a	1.10 a	-0.10 e	53 a
	Neutral	10.1 a	-1.96 ab	37 a	-0.08 bcd	0.03 a	7 a
	Basic	10.0 a	-2.44 ab	22 a	-0.74 de	-0.01 abc	20 a
Citrate	Acidic	9.1 a	-1.92 ab	23 a	1.26 a	-0.07 de	7 a
	Neutral	10.5 a	-2.10 ab	24 a	0.63 ab	0.03 a	27 a
	Basic	10.3 a	-2.74 ab	32 a	-0.31 cde	-0.01 abc	47 a
Phosphate	Acidic	9.5 a	-2.32 ab	26 a	0.54 ab	-0.05 cde	40 a
	Neutral	10.1 a	-2.54 ab	25 a	0.05 bc	0.02 a	47 a
	Basic	9.4 a	-3.72 b	27 a	-1.53 f	-0.05 cde	13 a
			Main ej	ffects			
No buffer		9.2 a	-1.78 a	30 a	-0.33 c	0.00 a	17 a
Bis-tris		10.0 a	-2.14 ab	29 a	0.09 b	-0.03 b	27 a
Citrate		10.0 a	-2.25 ab	27 a	0.53 a	-0.02 ab	27 a
Phosphate		9.7 a	-2.86 b	26 a	-0.31 c	-0.02 ab	33 a
	Unaltered	9.5 a	-1.92 a	39 a	-0.37 bc	0.01 ab	7 a
	Acidic	9.2 a	-1.86 a	26 b	0.71 a	-0.06 c	27 a
	Neutral	10.1 a	-2.08 a	28 b	-0.09 b	0.02 a	28 a
	Basic	9.7 a	-2.80 a	28 a	-0.63 c	-0.01 b	25 a
			Signific	cance			
Buffer		NS	0.0079	NS	< 0.0001	NS	NS
рН		0.0271	0.0080	0.0389	< 0.0001	< 0.0001	NS
B*P		NS	NS	NS	< 0.0001	0.0004	0.0005

NS=not significant.

^zPercentage of stems showing characteristic.

Table 3. The effect of vase solution EC and commercial holding solution (Floralife Professional) on vase life, water uptake, fresh weight, petal browning, bent stem at base of inflorescence, petal drying, petal fading, and leaf wilting, and change in water pH, EC and fresh weight of *Hydrangea macrophylla*. Treatments with holding solution had an initial pH of 3.5. Treatments without holding solution had an initial pH of 5.1. Means are an average of 15 stems, except for main effect means, which were an average of 30 or 135 stems.

Holding	EC	Vase life	Change	Water	Change in	Change in	Petal	Bent	Petal	Petal	Leaf
solution	(dS/m)	(d)	in fresh	uptake	pH	EC	browning	stem	drying	fading	wilting
			weight	(mL)	-	(dS/m)	$(\%)^{z}$	$(\%)^{z}$	$(\%)^{z}$	$(\%)^{z}$	$(\%)^{z}$
Yes	0.40	7.3 defg	-21.9 ab	300 a	0.00 f	0.02 e	100 a	13 ab	7 b	7 a	60 a
	0.50	8.9 cde	-24.3 ab	289 abc	0.13 ef	0.14 de	60 ab	13 ab	13 b	27 a	53 a
	0.75	11.3 bc	-15.5 a	279 abcd	0.12 ef	0.29 cd	100 a	7 ab	7 b	7 a	60 a
	1.00	10.5 bcd	-19.3 ab	302 a	0.19 cde	0.24 cde	87 ab	13 ab	20 ab	33 a	67 a
	2.00	9.6 cd	-20.4 ab	228 cd	0.06 ef	0.45 bc	93 a	13 ab	20 ab	13 a	67 a
	2.50	15.4 a	-18.1 ab	263 abcd	0.15 de	0.59 b	100 a	7 ab	60 a	33 a	80 a
	3.00	8.1 cdef	-24.7 ab	256 abcd	0.06 ef	0.20 cde	93 a	0 b	40 ab	7 a	67 a
	4.00	13.4 ab	-19.8 ab	253 abcd	0.05 ef	1.36 a	100 a	33 ab	20 ab	27 a	67 a
No	0.00	3.5 h	-19.2 ab	297 ab	0.37 abcd	0.01 e	47 b	27 ab	7 b	0 a	47 a
	0.25	3.7 gh	-22.6 ab	270 abcd	0.38 abc	0.03 de	67 ab	7 ab	7 b	13 a	60 a
	0.50	4.5 fgh	-27.2 b	276 abcd	0.46 a	0.07 de	87 ab	33 ab	20 ab	7 a	47 a
	0.75	4.6 fgh	-27.2 b	271 abcd	0.53 a	0.07 de	80 ab	47 ab	7 b	7 a	47 a
	1.00	4.8 fgh	-19.2 ab	242 abcd	0.43 ab	0.09 de	80 ab	20 ab	7 b	13 a	20 a
	2.00	4.3 gh	-21.8 ab	234 bcd	0.49 a	0.17 cde	80 ab	40 ab	0 b	13 a	27 a
	2.50	4.5 fgh	-21.0 ab	229 cd	0.52 a	0.20 cde	87 ab	53 a	13 b	0 a	27 a
	3.00	5.3 efgh	-20.6 ab	215 d	0.23 bcde	0.27 cde	100 a	40 ab	7 b	7 a	53 a
	4.00	5.7 efgh	-25.8 ab	245 abcd	0.47 a	0.24 cde	80 ab	20 ab	7 b	0 a	33 a
Yes		10.6 a	-20.5 a	271 a	0.08 b	0.41 a	92 a	13 b	23 a	19 a	65 a
No		4.5 b	-22.7 b	253 b	0.43 a	0.13 b	79 b	32 a	8 b	7 b	40 b
	0.00	3.5 d	-19.2 a	297 a	0.37 a	0.01 e	47 c	27 a	7 a	0 a	47 a
	0.25	3.7 d	-22.6 a	270 abc	0.38 a	0.03 de	67 bc	7 a	7 a	13 a	60 a

	0.41	7.3 abc	-21.9 a	300 a	0.00 c	0.02 e	100 a	13 a	7 a	7 a	60 a	
	0.50	6.7 c	-25.8 a	282 ab	0.30 ab	0.17 cde	73 abc	23 a	17 a	17 a	50 a	
	0.75	7.9 abc	-21.3 a	275 abc	0.33 a	0.18 cde	90 ab	27 a	7 a	7 a	53 a	
	1.00	7.6 abc	-19.3 a	272 abc	0.31 ab	0.17 cde	83 ab	17 a	13 a	23 a	43 a	
	2.00	6.9 bc	-21.1 a	231 c	0.28 ab	0.31 bc	87 ab	27 a	10 a	13 a	47 a	
	2.50	10.0 a	-19.6 a	246 bc	0.33 a	0.39 b	93 ab	30 a	37 a	17 a	53 a	
	3.00	6.7 c	-22.6 a	236 bc	0.14 b	0.23 bcd	97 ab	20 ab	23 a	7 a	60 a	
	4.00	9.5 ab	-22.6 a	249 bc	0.26 ab	0.80 a	90 ab	27 a	13 a	13 a	50 a	
	Significance											
Holding		< 0.0001	0.0161	0.0017	< 0.0001	< 0.0001	NS	< 0.0001	0.0003	0.0017	< 0.0001	
EC		< 0.0001	NS	< 0.0001	< 0.0001	< 0.0001	0.0014	NS	0.0224	NS	NS	
Linear		0.0003	NS	< 0.0001	NS	< 0.0001						
Quadratic		NS	NS	0.0015	NS	0.008						
Cubic		0.0068	NS	NS	NS	0.0005						
Residual		NS	NS	NS	< 0.0001	0.0357						
H*E		< 0.0001	0.0312	NS	0.0259	< 0.0001	NS	NS	0.0457	NS	NS	
H*EL		NS	NS	NS	NS	< 0.0001						
H*EQ		NS	NS	NS	NS	< 0.0001						
H*EC		NS	NS	NS	NS	0.0001						
H*ER		0.0152	0.0312	0.0312	NS	0.0052						

NS=not significant. ^zPercentage of stems showing characteristic.

Table 4. The effect of vase solution pH and buffer on vase life, water uptake, petal browning, and leaf wilting, and change in water pH, EC and fresh weight of *Hydrangea macrophylla*. Treatments had an initial pH and EC of 3.0 and 0.44 dS/m (acidic), 6.1 and 0.25 dS/m (neutral) or 7.7 and 0.22 dS/m (basic). A control treatment of unaltered water was included, which had an initial pH and EC of 4.7 and 0.00 dS/m. Means are an average of 15 stems, except for main effect means, which were an average of 15, 45 or 60 stems.

Buffer	pН	Vase life	Change	Water	Change	Change	Petal	Leaf
		(d)	in fresh	uptake	in pH	in EC	browning	wilting
			weight	(mL)		(dS/m)	$(\%)^{z}$	$(\%)^{z}$
No buffer	Unaltered	3.3 d	-20.9 a	220 a	0.23 bc	0.01 bc	27 bc	27 a
	Acidic	7.4 a	-17.9 a	235 a	0.09 cd	-0.07 f	87 a	53 a
	Neutral	3.7 cd	-17.9 a	214 a	0.13 d	0.01 bc	33 abc	27 a
	Basic	3.7 cd	-24.5 a	212 a	-2.59 g	0.00 cd	27 bc	33 a
Bis-tris	Acidic	5.2 b	-28.1 a	212 a	1.15 a	-0.04 e	80 ab	53 a
	Neutral	3.6 cd	-18.9 a	236 a	-0.05 d	0.04 b	27 bc	40 a
	Basic	3.7 cd	-18.9 a	261 a	-1.31 f	0.08 a	27 bc	20 a
Citrate	Acidic	4.7 bc	-26.5 a	231 a	0.35 b	-0.07 f	67 abc	60 a
	Neutral	3.7 cd	-18.2 a	225 a	-0.03 d	-0.02 cde	20 c	27 a
	Basic	3.8 cd	-21.6 a	190 a	-0.78 e	-0.03 de	20 c	40 a
Phosphate	Acidic	5.7 b	-22.9 a	236 a	0.41 b	-0.12 g	80 ab	27 a
	Neutral	3.1 d	-17.7 a	226 a	-0.10 d	0.01 bc	33 abc	7 a
	Basic	4.6 bc	-23.6 a	219 a	-0.99 e	-0.02 cde	47 abc	40 a
			Ι	Main effect	ts			
No buffer		4.5 a	-20.3 a	221 a	-0.60 c	-0.01 b	43 a	35 a
Bis-tris		4.2 a	-21.9 a	236 a	-0.07 a	0.03 a	44 a	38 a
Citrate		4.0 a	-22.1 a	215 a	-0.15 ab	-0.04 c	36 a	42 a
Phosphate		4.5 a	-21.4 a	227 a	-0.23 b	-0.05 c	53 a	24 a
	Unaltered	3.3 c	-20.9 a	220 a	0.23 b	0.01 a	27 bc	27 a
	Acidic	5.7 a	-23.9 a	229 a	0.50 a	-0.08 b	78 a	48 a
	Neutral	3.5 bc	-18.2 a	225 a	-0.08 c	0.01 a	28 b	25 a
	Basic	4.0 b	-22.2 a	221 a	-1.42 d	0.01 a	30 b	33 a
			S	Significanc	re			
Buffer		< 0.0001	NS	NS	< 0.0001	< 0.0001	NS	NS
pН		< 0.0001	NS	NS	< 0.0001	< 0.0001	< 0.0001	0.0452
B*P		< 0.0001	NS	NS	< 0.0001	< 0.0001	NS	NS

NS=not significant.

^zPercentage of stems showing characteristic.

Table 5. The effect of vase solution EC and commercial holding solution (Floralife Professional) on vase life, water uptake, fresh weight, petal drying, stem bending, floret shedding, and petal fading, and change in water pH, EC and fresh weight of snapdragon 'Pink'. Treatments with holding solution had an initial pH of 3.6. Treatments without holding solution had an initial pH of 5.4. Means are an average of 15 stems, except for main effect means, which were an average of 30 or 135 stems.

Holding	EC	Vase life	Change in	Water	Change in	Change in	Petal	Stem	Floret	Petal
solution	(dS/m)	(d)	fresh	uptake	pН	EC	drying	bending	shedding	fading
			weight	(mL)		(dS/m)	$(\%)^{\mathrm{z}}$	$(\%)^{z}$	$(\%)^{z}$	$(\%)^{z}$
Yes	0.39	12.9 a	-1.14 bcde	90 a	-0.19 f	0.00 i	100 a	27 bcd	7 a	100 a
	0.50	13.1 a	1.10 abc	85 a	0.07 de	0.06 hi	100 a	7 d	33 a	100 a
	0.75	13.7 a	1.63 ab	76 abc	0.08 de	0.13 fghi	93 ab	0 d	7 a	100 a
	1.00	13.9 a	-0.14 abcd	81 ab	0.01 def	0.19 efgh	100 a	7 d	20 a	100 a
	2.00	14.8 a	2.08 ab	90 a	0.01 def	0.29 cdef	100 a	0 d	13 a	100 a
	2.50	14.5 a	2.46 a	81 ab	-0.06 ef	0.45 abc	100 a	0 d	7 a	100 a
	3.00	13.7 a	0.76 abc	81 ab	-0.18 f	0.54 ab	93 ab	13 cd	40 a	100 a
	4.00	13.0 a	3.20 a	83 ab	-0.07 ef	0.59 a	100 a	7 d	7 a	100 a
No	0.00	5.7 c	-3.72 def	46 cd	-0.46 g	0.00 i	20 e	93 a	7 a	13 d
	0.25	7.3 bc	-4.58 ef	52 bcd	0.59 a	0.03 hi	27 de	73 ab	13 a	27 cd
	0.50	5.5 c	-2.46 cdef	35 d	0.44 ab	0.04 hi	13 e	87 a	7 a	7 d
	0.75	7.9 bc	-3.42 def	36 d	0.21 bcd	0.08 ghi	47 cde	73 ab	20 a	47 bcd
	1.00	8.0 bc	-3.62 def	63 abcd	0.35 bc	0.10 ghi	53 bcde	67 ab	20 a	47 bcd
	2.00	8.5 b	-4.66 ef	60 abcd	0.34 bc	0.23 defg	40 cde	73 ab	33 a	40 bcd
	2.50	9.4 b	-6.02 f	35 d	0.22 bcd	0.31 cde	67 abcd	60 abc	27 a	67 abc
	3.00	9.7 b	-5.52 f	58 abcd	0.03 def	0.37 bcd	73 abc	33 bcd	47 a	73 ab
	4.00	7.4 bc	-4.98 f	42 d	0.13 cde	0.36 cde	40 cde	60 abc	7 a	40 bcd
Yes		13.7 a	1.25 a	83 ab	-0.04 b	0.28 a	98 a	8 b	17 a	100 a
No		7.7 b	-4.33 b	47 b	0.21 a	0.17 b	42 b	69 a	20 a	40 b
	0.00	5.7 d	-3.72 bc	46 cd	-0.46 f	0.00 e	20 d	93 a	7 b	13 d
	0.25	7.3 d	-4.50 c	52 bcd	0.59 a	0.03 de	27 cd	73 ab	13 ab	27 cd
	0.39	12.9 a	-1.14 ab	90 a	-0.19 e	0.00 e	100 a	27 c	7 b	100 a

	0.50	0.0	0.00	(0.1	0.051	0.05.1	<i>C</i> 7 1	477.1	20 1	521
	0.50	9.3 c	-0.68 a	60 bc	0.25 b	0.05 de	57 bc	47 bc	20 ab	53 bc
	0.75	10.8 bc	-0.89 a	56 bc	0.15 bc	0.11 de	70 ab	37 c	13 ab	73 ab
	1.00	10.9 bc	-1.88 ab	72 ab	0.18 bc	0.15 cd	77 ab	37 c	20 ab	73 ab
	2.00	11.7 ab	-1.29 ab	75 ab	0.18 bc	0.26 bc	70 ab	37 c	23 ab	70 ab
	2.50	11.9 ab	-1.78 ab	58 bc	0.08 cd	0.38 ab	83 ab	30 c	17 ab	83 ab
	3.00	11.7 ab	-2.38 abc	70 abc	-0.08 de	0.46 a	83 ab	23 c	43 a	87 a
	4.00	10.2 bc	-0.89 a	62 bc	0.03 cd	0.48 a	70 ab	33 c	7 b	70 ab
		÷	·	Si	gnificance	·	·			
Holding		< 0.0001	< 0.0001	< 0.0001	< 0.001	< 0.0001	< 0.0001	< 0.0001	NS	< 0.0001
EC		< 0.0001	0.0117	NS	< 0.001	< 0.0001	0.0063	0.0268	0.0187	0.0002
Linear		< 0.0001	NS	NS	0.035	< 0.0001				
Quadratic		< 0.0001	NS	0.0215	0.0023	0.0459				
Cubic		0.0017	0.0001	NS	< 0.0001	NS				
Residual		< 0.0001	0.0095	0.0001	< 0.0001	NS				
H*E		NS	0.0013	NS	NS	0.0302	0.0138	0.0460	NS	0.0057
H*EL		0.0509	< 0.0001	NS	NS	0.0123				
H*EQ		NS	NS	NS	NS	NS				
H*EC		NS	NS	NS	NS	NS				
H*ER		NS	NS	NS	NS	NS				
								•		•

NS=not significant. ^zPercentage of stems showing characteristic.

Table 6. The effect of vase solution pH and buffer on vase life, water uptake, and petal fading, and change in water pH, EC and fresh weight of snapdragon 'Pink'. Treatments had an initial pH and EC of 3.4 and 0.44 dS/m (acidic), 6.3 and 0.25 dS/m (neutral) or 8.1 and 0.22 dS/m (basic). A control treatment of unaltered water was included, which had an initial pH and EC of 5.8 and 0.00 dS/m. Means are an average of 14 stems, except for main effect means, which were an average of 14, 42 or 56 stems.

Buffer	pH	Vase life	Change	Water	Change in	Change in	Petal
	-	(d)	in fresh	uptake	pH	EC	fading
			weight	(mL)		(dS/m)	$(\%)^{z}$
No buffer	Unaltered	6.3 a	-3.54 a	69 a	-0.51 ef	0.02 bc	14 a
	Acidic	7.1 a	-2.00 a	72 a	0.06 bcd	-0.09 f	36 a
	Neutral	8.0 a	-4.24 a	69 a	0.34 ab	0.02 bc	43 a
	Basic	7.2 a	-4.46 a	64 a	-0.23 cde	0.01 bcd	21 a
Bis-tris	Acidic	6.3 a	-3.94 a	55 a	0.37 ab	-0.06 ef	21 a
	Neutral	6.0 a	-3.82 a	51 a	0.21 bc	0.04 b	7 a
	Basic	5.7 a	-4.08 a	65 a	-0.68 ef	0.07 a	7 a
Citrate	Acidic	8.0 a	-4.86 a	71 a	0.76 a	-0.06 e	29 a
	Neutral	7.2 a	-4.46 a	67 a	0.31 ab	0.01 cd	43 a
	Basic	5.9 a	-3.26 a	60 a	-0.32 de	-0.01 d	14 a
Phosphate	Acidic	6.8 a	-3.72 a	64 a	0.35 ab	-0.04 e	36 a
	Neutral	7.7 a	-5.42 a	59 a	-0.01 bcd	0.02 bc	43 a
	Basic	7.1 a	-4.46 a	59 a	-0.98 f	0.00 dc	36 a
			Main efj	fects			
No buffer		7.2 a	-3.56 a	68 a	-0.09 b	-0.01 b	29 ab
Bis-tris		6.0 a	-3.95 a	57 b	-0.03 b	0.01 a	12 b
Citrate		7.0 a	-4.19 a	66 ab	0.25 a	-0.02 b	29 ab
Phosphate		7.2 a	-4.53 a	61 ab	-0.21 b	-0.01 b	38 a
	Unaltered	6.3 a	-3.54 a	69 a	-0.51 b	0.02 a	14 a
	Acidic	7.1 a	-3.63 a	65 a	0.39 a	-0.06 b	30 a
	Neutral	7.2 a	-4.49 a	62 a	0.21 a	0.02 a	34 a
	Basic	6.5 a	-4.07 a	62 a	-0.55 b	0.02 a	20 a
			Significa	ance			
Buffer		NS	NS	0.0498	< 0.0001	< 0.0001	0.0381
pН		NS	NS	NS	< 0.0001	< 0.0001	NS
B*P		NS	NS	NS	< 0.0001	< 0.0001	NS

NS=not significant.

^zPercentage of stems showing characteristic.