Carmen Cosentino Presents

Cornell Floriculture Seminar

Carm Cosentino of Cosentino Florist, Auburn, recently presented the weekly Dept. of Floriculture and Ornamental Horticulture Seminar speaking on “The Future of the Floriculture Industry in New York State.” The audience included undergraduate and graduate students, and faculty and staff of the Department of Floriculture and Ornamental Horticulture at Cornell. Carmen’s enthusiastic and lively presentation indicated the floriculture industry is growing and that there are many opportunities in all phases of the field. It seemed during the question period that every student wanted to know (1) what is the future for a young person with a Bachelor of Science degree in floriculture in the industry?, (2) why do students hear that there are many jobs until they look for them?, and (3) why doesn’t the industry offer starting wages to a recent college graduate which are more comparable to other industries? Carmen fielded the questions well, indicating that industry is maturing and that salaries and opportunities are improving every day.

R. W. Langhans

Unemployment Insurance

Service O.K.ed

The Board of Directors at their April 24 meeting decided that there was interest enough to go ahead with the Unemployment Insurance Service and gave it their final approval.

We are surprised, however, that we haven’t received more Authorization forms as yet. Remember — 1. You could save money. 2. You get a valuable service. 3. The only cost to you is 1/2 of any savings.

DON’T PUT IT OFF — MAIL YOUR AUTHORIZATION TODAY!

All Roads Lead to

Lake George Sept. 13 - 16

The Convention Committee and the Board of Directors of N.Y.S. Flower Industries met separately, but on the same day, April 21, at Voorhesville. Both voted an all clear — full speed ahead for this year’s Fall Flower Festival, September 13-16 at Bolton Landing.

Program committees reported that very interesting workshops and seminars are being planned, but details were not quite complete as we go to press. Just to whet your appetite — how about a panel (a grower, a wholesaler, a retailer), with a topic like “Who’s to Blame? — Not Me.”

The Design School committee has lined up Lou Shea, Clover Flower Shop, Camden, New Jersey, as commentator; and four designers, sponsored by the wire services, will provide a spectacular design school on Sunday afternoon.

Of equal interest, perhaps, will be the Saturday afternoon Design seminar covering special topics such as use of “Dried Materials,” “Terrariums,” and “Christmas Materials.”

Mark your calendar now! Plan a weekend vacation in September at Lake George.

“'The Sagamore” 1974 Convention Site
Fusarium Stub Dieback of Carnation

Paul E. Nelson, Barbara W. Pennypacker, T. A. Toussoun and R. K. Horst
Departments of Plant Pathology
The Pennsylvania State University and Cornell University

Fusarium stem rot is caused by the fungus, Fusarium roseum, and is a distinct disease from Fusarium wilt caused by F. oxysporum f. sp. dianthi. Fusarium oxysporum f. sp. dianthi enters the plant through the root tips and grows throughout the water-conducting tissue of the plant while F. roseum usually attacks the outer portion of the stem. In the past, F. roseum has been considered mainly to cause a basal cutting rot and a stem rot on young plants causing the most damage to cuttings during propagation and to young rooted cuttings when they are benched.

In the past few years, carnation growers in the northeastern USA have experienced moderate to severe losses from the Fusarium stem rot disease. However, these losses were not from stem rot on young rooted cuttings, but resulted from damage on mature flowering plants. A program was initiated to study this disease in 1970. The study was supported in part by a grant from the Pennsylvania Flower Growers (Dillon Research Fund) and the field work was done in cooperation with Mr. Herman Hellberg of the Peter Hellberg Company, Chalfont, Pa.

Damage occurs on mature flowering plants as a dieback of the stubs left when flowers are cut or plants are pinched (Fig. 1, 2). The fungus grows down the stub killing it (Fig. 2a, 3a), and then into the sidebreak (Fig. 2b, 3c) or main stem (Fig. 2c, 3d), and may girdle the stem causing wilting and death of the branches and reducing the productivity of the plant (Fig. 3). When the relative humidity in the greenhouse is high for a period of time, the fungus can be seen growing on infected stubs (Fig. 5, 6). Often a stem is girdled by the fungus about the time a flower is ready to be cut resulting in the loss of that flower just prior to harvest (Fig. 4). These symptoms are called the stub dieback phase of Fusarium stem rot of carnation and are caused by the fungus, F. roseum 'Graminearum'.

Stub dieback has occurred more frequently in the past few years resulting in serious losses for some growers. Losses result from girdling and killing stems of the current flower crop and from stem girdling of sidebreaks that would produce a future flower crop. Losses from Fusarium stub dieback in Pennsylvania for 1973 averaged 12% based on grower estimates. In 1972, the Pennsylvania carnation crop had a wholesale value of 3 million dollars and on this basis the estimated value of the crop was about $360,000 for 1973. In New York, stub dieback also has been the most damaging disease on carnation in recent years.

Carnation stub dieback is not a new disease although the epidemic that occurred in the northeastern USA from 1969 to 1973 was a most destructive outbreak of the disease. The disease was first reported in California in 1912. Since then it has been reported to occur in England, France, Denmark, Sweden, and New Zealand. It has been called branch rot, die-back, stub fusariosis, and stub dieback. We think the latter term best describes the disease and will use it throughout this paper. In England the disease was considered to be of minor importance because growth of the fungus rarely progressed down the stem more than a few internodes and stopped at the junction with a larger branch or main stem. In the USA, France, and New Zealand, the disease was considered to be a potentially serious problem. Fusarium roseum 'Avenaceum', F. roseum 'Culmorum' and several other Fusarium species have been reported to cause this disease. Both F. Roseum 'Avenaceum' and F. roseum 'Culmorum' are pathogens on carnation in the USA and are important as the cause of basal cutting rot and stem rot of young rooted cuttings. However, we have only found F. roseum 'Graminearum' associated with stub dieback and have not been able to isolate either F. roseum 'Avenaceum' or F. roseum 'Culmorum' from affected plants. Apparently this is the first time F. roseum 'Graminearum' has been reported as the cause of this disease and may be in part responsible for the severity of the disease outbreak in this area. During the past few years, we have observed cases where F. roseum 'Graminearum' attacked a stub several feet from the ground, grew down that stub into the main stem, and eventually all the way to the soil line killing the entire plant.

Although infected stubs can occur on young plants at the time they are pinched, most infected stubs occur on second year plants and are 3½ to 4 feet or more above the soil line. This is too far for spores to be spread by splashing water and indicates that spores may be spread through the air. A program of air sampling was initiated to determine what spores might be present in the air in a carnation greenhouse. Petri dishes containing a special agar medium, devised for direct isolation of Fusarium species were used. Dishes were exposed, for 15 minute periods in two greenhouses, at biweekly or monthly intervals during a six month period. After exposure, the plates were returned to the laboratory and placed in a favorable environment for growth of Fusarium species. All isolates were identified after a suitable growth period.

Samples were taken at 14 foot intervals along each bench at each sampling period. Three dishes were used at each sampling site and one dish was placed directly on the soil, one 21 inches above the soil and one 49 inches above the soil. The two lower dishes at each sampling period were returned to the laboratory and placed in a favorable environment for growth of Fusarium species. All isolates were identified after a suitable growth period.

Samples were taken at 14 foot intervals along each bench at each sampling period. Three dishes were used at each sampling site and one dish was placed directly on the soil, one 21 inches above the soil and one 49 inches above the soil. The two lower dishes at each sampling period were returned to the laboratory and placed in a favorable environment for growth of Fusarium species. All isolates were identified after a suitable growth period.

Concurrently with the air sampling, stubs showing dieback symptoms were collected and cultured. All Fusarium species recovered were identified. Samples of wood fibers from the cooling pads were collected in September and cultured and all Fusarium species recovered were identified. Petri dishes of the special agar medium were also used to sample air outside the greenhouse and to obtain samples from the air around piles of carnation trash near the greenhouse.

The largest number of isolates of F. roseum 'Graminearum', obtained from air sampling in the greenhouse, occurred on dishes exposed in September. Isolates occurred on dishes exposed 49 inches above the soil, indicating the possibility of air-borne fungus spores.

The fungus was also recovered from carnation stubs showing severe dieback symptoms, and from wood fibers from the cooling pads. The fungus was not recovered from air sampling outside the greenhouses or air around the trash piles. All isolates of F. roseum 'Graminearum'

(continued on page 5)
New York State Flower Industries Bulletin No. 46, May, 1974

Fig. 1-4. 1) Portion of a carnation stem showing stub dieback. Note that the sidebreak has been girdled by Fusarium roseum 'Graminearum' and is wilting. 2) Close-up of a portion of the carnation stem in Fig. 1 showing stub dieback (a); girdling of the sidebreak (b); and dieback of the stem below the stub (c). 3) Portions of carnation stem with a healthy stem on the left and three infected stems showing stub dieback on the right. The stems have been split longitudinally to show stub dieback (a); lesion formation in the internode (b); and girdling and killing of adjacent shoots (c). Note the limited amount of dieback occurring on the healthy stub (left). Fusarium roseum 'Graminearum' usually is not associated with this type of dieback. 4) Portion of a carnation flower stem showing girdling of the stem (arrow) by F. roseum 'Graminearum' and subsequent wilting of the flower as it opened.

Fig. 5-6. Portions of carnation stems from naturally infected plants in a commercial greenhouse range. 5) The fungus, Fusarium roseum 'Graminearum' has grown down the infected stub and is growing through the node. 6) The fungus has grown down the stub, girdled the sidebreak, grown through the node, and into the stem internode below.

Look for • Top Quality
• Up-to-Date Products
from the innovators in
AUTOMATIC WATERING

CHAPIN WATERMATICS, INC.
P. O. Box 298 Watertown, N. Y. 13601

write for free literature

For the Best in . . .
• Seeds • Bulbs • Supplies
• Plants • Mums • Containers

It's the
VAUGHAN-JACKLIN corporation

5300 KATRINE AVE. • DOWNERS GROVE, ILL. 60515 • (312) 969-6300
CHIMNEY ROCK ROAD • BOUND BROOK, N. J. 08805 • (201) 356-4200

Represented by
John Noce Robert Slayter
(315) 699-4169 (617) 754-1457

1897 1974

BULBS, PLANTS, SEEDS, SUPPLIES
MUM AND CARNATION CUTTINGS

For 77 years, we have been serving the trade specializing in a complete line of horticultural products. Should you find the need, please contact our sales representative, Jim Snyder, who will assist you in your growing needs. If you are in the trade, our catalogue is yours for the asking.

S. S. SKIDELSKY & CO., INC.
685 Grand Avenue Ridgefield, N. J. 07657
Telephone: (201) 943-7840
CUSTOMER INVOLVEMENT IN DISPLAYS

The shop windows have become a point of community interest in the few months since the shop, Flowers by John Michael, opened in New Orleans. Area residents go out of their way to see what is being featured. He believes display windows must interest prospective customers — get them involved.

- Customer involvement was proved when Mr. Martinez put together a Mother's Day window. His idea was inspired by a 144-year-old oil lamp, covered with angels and flowers. A manikin, in a dress, bonnet, and shawl — all over 60 years old, was seated in an antique rocker beside the lamp.

Customers became interested and started bringing in different items to be added: A pair of eyeglasses 93 years old, a family portrait over 100 years old, antique candle holders, and a milk glass pitcher. The window also included an 80-year-old coffee grinder, a pot belly stove, bucket and tongs, and an iron kettle of uncertain age.

Mr. Martinez says many people came in wanting to buy the antiques. Since they were all loaned by friends, they were not for sale. But his flowers were.

- However, the fact that customers loaned their valuable antiques voluntarily, just through interest, shows the value of Mr. Martinez's theory. Windows should attract people, not just show merchandise. Merchandise is displayed inside. But first — get them in!

Other windows have featured art objects collected from all over the world by the shopowner. Mr. Martinez admits it is difficult to come up with something different for each window change. But he says it is fun and keeps the buying public interested.

IT'S A CORSAGE! IT'S AN ARRANGEMENT!

A small basket with a carrying handle makes a charming container and a fine way to showcase a corsage, particularly if it consists of large flowers such as orchids, lilies, or chrysanthemums. The corsage is incorporated into a basket arrangement which serves not just one but several purposes.

- It may be pinned to a coat or dress, carried in its basket to church on Easter Sunday, or it can grace the table or mantel as a basket of foliage, with or without the corsage. In fact, this is a fine way to show a corsage at any time.

HOSPITAL DELIVERY DO'S AND DON'TS

1. Do encourage customers to send green plants, dish gardens, terrariums or other green planters. These are easily cared for, and patient can bring them home. Be certain foliage is green when you deliver.

2. Do suggest, if flowers are preferred, that your customer send a smaller sized arrangement, in an interesting, well-balanced container. The smaller arrangement doesn't crowd rooms and is more easily distributed and maintained in the hospital.

3. Don't send boxed, cut flowers without container. If plant is delivered, provide plant coaster.

4. Do provide simple instructions to care for flowers and plants. Don't overfill container and avoid unsightly dripping.

5. Do deliver only to designated reception areas or flower rooms.

6. Do print patients name clearly on delivery tag. If recipient is married woman, obtain her first name, i.e. "Mrs. Jane Doe" instead of "Mrs. John Doe". Do phone hospital before delivery to assure patient is there. Do print patient’s room number on delivery tag.

7. Do deliver at times designated by hospital and make certain driver is neat and quiet.

8. Don't deliver to burn units, kidney-dialysis areas, intensive care units, cancer or neurosurgical units, or nursery areas. Instead, take order and suggest to your customer a later delivery date when patient is in general hospital area or suggest a "welcome home" delivery when patient leaves hospital.

9. Do use non-breakable containers for psychiatric unit because glass can break and cut patient.

10. Don't use highly flammable, dried material or cedar (arborvitae) or natural Christmas greens. Do use a preservative in your arrangements, so patient, hospital staff, and customer are impressed with the "lasting quality".

11. Do be proud of your work; be co-operative; be smart and put your shop name, address, telephone number and date of delivery on greeting card.

— F.T.D.

On the day after Easter, the wisdom of such a design is proved . . . Any other bouquet of the type to be carried or worn becomes useless when there is no further occasion for wearing it. It usually lies unseen in a refrigerator, slowly fading away.

But when a corsage has been designed to fit into an arrangement, it can be returned to its setting, there to be admired and enjoyed by all who see it in the days to follow.

● Arrange foliage in the basket. Leave a space for the corsage to fit, or attach it to the front of the basket with 2 corsage pins thrust through the corsage ribbon and down into the mesh of the basket. Or if you prefer, staple a ribbon bow to the edge of the basket, and pin the corsage to that.

The imaginative florist will see other uses for such a design . . . As a bride's or bridesmaid's bouquet, it provides a corsage for the young woman to wear away from the festivities.

It also makes an ideal hostess gift for Easter or any occasion when there’s a chance the hostess may receive more than one corsage, because instead of having to choose between the 2, she can use it as a table decoration.

—From California Florist
SPEAKING OF DELIVERY PROBLEMS . . .

The following letter appeared in The Greater Kansas City Florist Association's "Petal Points" Newsletter:

"Sir: The purpose of this letter is to inform you of the difficulties of transporting flowers in Alaska, which is nothing new down here. We have not had difficulty getting space on the airlines, but our little ferry broke down, which brings the flowers from the airport, which is on another island. In order to get my poinsettias across the channel, I had them flown over by helicopter. This information is for those who think they have delivery problems!" Ketchikan Flower & Gift Shop, Margaret Vandiver, Ketchikan, Alaska.

Dieback of Carnations

(continued from page 2)

were tested for pathogenicity on unrooted carnation cuttings and on freshly cut stubs left when flowers were cut. Unrooted cuttings were soaked in a suspension of conidia for 1 hour and rooted under intermittent mist in a mixture of 1/2 peat and 1/2 perlite for 30 days. After 30 days, the cuttings were removed and rated for basal stem rot. Freshly cut stubs were inoculated with a drop of water containing approximately 50 conidia. The drop was placed on the cut surface and the stub bagged to keep the relative humidity high. Isolates from air, stubs, and cooling pad fibers were pathogenic on both unrooted cuttings and freshly cut stubs. A large number of stubs collected and cultured did not yield any Fusarium species. Apparently there is some dieback or death of tissue on a stub that occurs naturally at certain times of the year. Many of the stubs collected showed dieback only 1/16 to 1/8 inch back from the cut surface (Fig. 3) and F. roseum 'Graminearum' usually was not isolated from these stubs. At the time of the stub collections, some stubs of this type were collected along with those showing more extensive dieback. Later in the year, stubs showing limited dieback could be distinguished easily from those infected by F. roseum 'Graminearum' because there was limited tissue death of uninfected stubs while in infected stubs the tissue was killed back to the main stem and girdling of the main stem and side shoots may occur.

The reasons for the sudden outbreak of the stub dieback phase of this disease are not known. However, there are several factors that may have some effect on disease development. Nutrition programs for carnations have been improved and are more closely regulated resulting in plants with a high nitrogen content and lush, soft growth. High nitrogen and rapid soft growth both make the plant more susceptible to F. roseum 'Graminearum' and favor development of the disease. The widespread use of fan and pad cooling results in higher relative humidity during the time the system is in operation and high relative humidity also favors disease development. The use of carbon dioxide in the fall, winter, and spring to improve flower quality also adds moisture to the greenhouse atmosphere and thus may raise the relative humidity. It is possible that these, and other factors, are in part responsible for the disease outbreaks over the past few years.

Future articles will deal with the source of the fungus, environmental conditions favoring disease development and disease control.
Treflan Causes A Small-Leaf Condition In Greenhouse Roses

John G. Seeley¹, Arthur Bing² and Morris Krapes³
Department of Floriculture and Ornamental Horticulture
Cornell University

When a grower finds abnormal plant growth, he wants to know the cause both to correct the situation and prevent reoccurrence. In October 1972, a rose grower observed that many of the young shoots of cultivars 'Forever Yours' and 'Fabergé' had zones with very small leaves (Fig. 1 & 2). Below and above these zones, the leaf size and flowers were normal, indicating that some factor had arrested growth at certain stages in the development of the rose shoot.

The problem appeared about the time the ventilators were first closed during the evening and heat was being used. Although the small leaf condition was similar to that which Paul V. Nelson (1) found to be caused by copper deficiency, this was believed unlikely because of the subsequent appearance of normal leaves farther up the stem. The widespread occurrence of the problem in the greenhouse at the start of the heating season when the ventilators were closed suggested a temporary influence such as spray or fumigation injury or air pollution.

After considering various possibilities, we became suspicious of the herbicide Treflan (trifluralin) which had been applied to the soil surface according to instructions for the control of weeds. It was suspected that either some of the material had accidentally fallen on the heating pipes and volatilized or sufficient fumes came from the soil surface to affect the young leaves in the closed greenhouse. Although the production of fumes sufficient to produce the leaf crippling seemed unlikely, the possible volatility of Treflan was tested by direct fumigation and by soil application.

The fumigation effect was tested by exposing potted 'Red American Beauty' rose plants to fumes of Treflan. Treflan at several rates was vaporized slowly in a small room. The plants with young shoots were put in the closed room for a 2-hour exposure, and grown under normal greenhouse conditions. After about a week, the plants showed symptoms (Fig. 3) very similar to the abnormal plants observed in the grower's greenhouse, namely normal leaves, then small leaves, then normal leaves and flower. The position of the area of small leaves on the stem corresponded to the age of the shoot when exposed. It was concluded that volatilized Treflan could cause the effect.

Testing for production of the effect by soil application of 5% granular Treflan at commonly used rates was the next step. To simulate greenhouse conditions in a confined space, pots were exposed in plastic hoods in the greenhouse. For the hoods standard 14 x 20 x 4 inch flats were lined with a sheet of plastic covered with 1/2 inch of soil, and a wood frame the size of the flat and 25 inches high was fitted on top of the flat. For treatment, the calculated dosage of Treflan granules was sprinkled on the soil in the flat; potted roses were supported on rubber stoppers on the soil in the flat and a plastic bag was placed over the frame and sealed under the flat. After exposure for 3-day periods, the pots of roses were returned to normal growing conditions for observation. Four hoods were used in the experiments. One was an untreated check and each of the others had a different rate of Treflan in pounds active ingredient per acre (lb ai/A) applied to the soil. Position effects were eliminated by rotating the rates used in the hoods. New soil was put into the flat and treated for each run. Plants were pinched to provide new shoots at the correct growth stage for treatment.

Following exposure to rates of 2, 4 or 8 lb ai/A for 3-day periods, 'Red American Beauty' and 'Forever Yours' plants developed the typical small leaf symptoms after one week in the greenhouse, while the untreated plants were unaffected. Leaves that were sufficiently mature before exposure and those leaves that expanded after the exposure were not affected. The test was repeated several times using 0, 1/2, 1 and 2 lbs ai/A for 3 days. In all cases, exposure to the 1 or 2 lb ai/A rate produced the same effect as shown in Figure 3. In only 1 treatment did the 1 lb rate produce a very slight effect.

To determine the length of exposure necessary for Treflan fumes to produce the effect on the leaves, a series was run at 0 and 1 lb ai/A on the soil: pots were removed after 1, 2 and 3 days. The 1-day (24-hr) exposure at the 1 lb rate was sufficient to produce the damage.

From these experiments, it is evident that Treflan can vaporize from the soil in a greenhouse and produce a small-leaf symptom on 'Red American Beauty' and 'Forever Yours' roses. In a closed greenhouse, a rate of 1 lb ai/A Treflan applied to the soil can be hazardous and Treflan on the pipes would make the situation still worse. Although these tests were only with roses, Treflan probably should not be used in any greenhouses because fumes are confined. The material, however, is satisfactory for soil application for roses out of doors.

¹ Professor of Floriculture at Ithaca.
² Professor of Floriculture at Cornell Oramentals Research Laboratory at Farmingdale, Long Island, New York.
³ Chairman, Science Department, Plainview-Old Bethpage Senior High School, on Sabbatic leave at C.O.R.L.

Figure 1. Malformed leaves on 'Forever Yours'.