A Look at Some of the New Spray Materials for Carnation Mother Blocks by L. J. Petersen
Qenerally speaking, the presence of Fusarium stem rot (causal agent, Fusarium roseun f. cerealis) has been correlated more frequently with cuttings and plents grom under the mother-block system than other cultural systems (1). Evidence to date has indicated that the application of captan to infested mother-blocks has def-
initely decreased the incidence of this disease. Complete control has not been achieved, however; therefore, some new materials have been tested in 1956 and 1957 and ovaluated for their effectiveness as pre-harvest sprays on carnation motherblocks.

Although the cultured-cutting technique (2) has reduced the incidence of systemic diseases of carnations to negligible proportions, the elimination of parasites within the cutting does not guarantee pathogen-free stock. This observation has focused attention on the problem of reducing inoculum on infested cuttings, presumably capable of carryingover the organism from the mother-block to the propagative beds (1). Consequently, the importance of an effective spray treatment designed to reduce the incidence of infection from inoculura orisinating at this source cannot be overemphasised.

Fig. 1.--The offect of various antifungal pre-harvest sprays on contiol of Pusarium stem rot and degree of rooting of Red Sim carnations. Solid bars show disease control in percent and white bars show degree of rooting in percent.

Captan has been the recommenced pre-harvest spray material for carnations (1), but, since the stem rot pathogen is so difficult to control, the
search continues for fungicides with greater potentialities. Among the new materials, the Omidines (manufactured by the Olin Mathieson Chemical Corp.) appear to have interesting possibilities. With the manganese salt of Omadine, OML564 holding the most promise for effective control of F. stem rot. This chemical possesses potent fungicidal activity and in addition seems to stimulate rooting after a series of 8 weekly sprays (Fig. 2 and 3)

Materials and Methods

The test compounds consisted of 3 Omadines, OM1483, OM1456, and OM1564, captan, dichloronitrobenzene (CP376) and Panogen 15. The test orgenism was the most pathogenic strain of Fusarium roseum f. cerealis isolated from diseased plants in the Denver area. Macroconidia of this organism were suspended in distilled water and standardized to 100,000 spores $/ \mathrm{ml}$. The spore suspension was then applied as a fine spray to mother block test plants as uniformly and evenly as possible. After inoculation the plants were allowed to dry for 24 hours before chemical treatments were applied. All chemical sprays were applied with a Burgess electric aprayer model VS-651. The rate of application was $500 \mathrm{cc} . / \mathrm{plot}$ (test plots contained 36 plants each) at dosages of $2 \mathrm{gr} . /$ Ilter for the wettable powders and a dilution of 1:800 for Panogen 15. Colloidal multifilm was used as a wetting agent.

Cuttings were propagated under mist after treatment. The rooting period was 21 days in all tests. After the rooting period cuttings were rated for disease severity and degree of rooting. In some cases, rooted cuttings were transplanted in order to further observe the performance of the various spray materials.

Results and Conclusions

At the concentrations tested, 0×1564 was more effective in controlling Fusarium stem rot after 3 successive foliar applications than any material tested and equally as effective after 8 applications. In addition, rooting was noticeably better after 8 applications than the noninoculated control.

Fig. 2.--Illustration showing degree of rooting between cuttings taken from an OM1564 treated plot and a non-inoculated, non-treated check. Cuttings on left sprayed a total of 8 times with 001564 at 1000 ppm .

Fig. 3.--Inoculated control plot 83 days after benching. Note large number of diseased plants and compare with Fig. 4.

Fig. L. --OM1504 treated plot 63 days after benching.

While capten reduces the incidence of Fusarium stem rot, the data presented in Fig. 1 indicates that newer material. may be as good or better for this purpose.

Several factors must be considered, before conclustons can be drawn. Even though OMD564 (Mn Omadine) appears to be better than captan in the control of Pusarium stem rot, it may be altered chenically under certain conditions. This may be observed readily by a change in color after a few minutes exposure to either sunlight or fluorescent light. The full significance of this has not been worked out but tests have indicated that the compound is 50% less offective after 7 days exposure to sunlight." This may or may not be det omining factor in its usefulness as a fungicide. Cortainly, it appeare that this would govers the tifing of epray applications to some extent.

Perhaps an even more significant factor inrolved is availability of the compound, since none of the amadines are
on the market at present. It is known that at least a fow may be available in the future. Whether or not Manganese Omadine will be one of these is not known.

The experimonts reported and discussed in this report represent initial steps in evaluating MM564. Further testing is necessary under commercial scale operatione.

Literature Cited

1. Baker, Halph. 1957. Thinking about carnation diseases. Colorado Flower Growers Assoc. Bulletin. 90:1-5.
2. Tammen, J., K. K. Baker, and W. D. Holley. 1956. Control of carnation diseaces through the cultured cutting technique. Plant Dis. Heptr. Supplement 238:72-76.

* Porsonal conmunication from A. M. Hillis, Olin Mathieson Corp.

How Summer Cooling Affected Winter Quality in
Ome Planting at Fort Collins Last Year

There is a lot of food for thought in this graph. We will cover this and a lot of other important points at the College Day session on Wocneaday, October 9. Plan to be here.

