NOTICE
We are at all times attempting to keep our addressograph pencils correct. The only way we can accomplish this is with your help. Will you please take a moment to check your name and address as it appears on the envelope in which you received this bulletin? If any corrections are necessary, please drop a post card to your Editor so that a new stencil can be made before the next issue. The next M.F.G.A. bulletin will be in May. We would like to have all necessary corrections by May 1st so that new stencils can be made. Thank you.

NEW MEMBERS
Our Association is growing all the time but we are always in need of new members. If you know of any florist who is not now a member, urge him to join us. A note to either the Secretary or Editor will bring a membership application for your use. Membership in our Association will entitle one to receive 6 issues of the bulletin each year and reduced registration at the two meetings of the Association each year.

Also, if you are now a member and your dues have not yet been paid, send that check at once to insure continued receipt of your bulletin.

INTERRUPTED LIGHTING IMPROVES WINTER STANDARDS
W. E. Duffett
Ohio State Flor. Assoc. Bul. 326, November, 1956
To increase the number of petals in winter-flowered standard chrysanthemums, an interrupted lighting schedule of 9 short days, 12 long days, and short days until flowering is recommended.
Quilling of Indianapolis varieties is increased with temperatures below 60°F.

AIR-CONDITIONED CYCLAMEN
W. W. Willis
Kansas State College Flor. Bul. 33, September, 1956
In a greenhouse section cooled by a fan and pad system, 97 percent of the cyclamen plants survived. Growth of the tops, roots and corms was of an excellent quality. Cooling with fog nozzles resulted in 74 percent survival, but the corms and roots were infected with a fungus disease. Plants in the section without cooling equipment were poor in quality and 64 percent of them survived.

Reprinted from Pennsylvania Flower Growers' Bulletin No. 72, January 1957

CHEMICALS APPLIED JUNE 8 - DATA TAKEN JULY 5 - 1956 -

<table>
<thead>
<tr>
<th>Code</th>
<th>Treatment</th>
<th>Type</th>
<th>Rate</th>
<th>Weed Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dinitro 12%(Verm.)</td>
<td>dry</td>
<td>6</td>
<td>0*</td>
</tr>
<tr>
<td>2</td>
<td>Dinitro 9%(Clay)</td>
<td>dry</td>
<td>6</td>
<td>0+</td>
</tr>
<tr>
<td>3</td>
<td>Chloro IPC 4%(Clay)</td>
<td>dry</td>
<td>6</td>
<td>0+</td>
</tr>
<tr>
<td>4</td>
<td>Karmex DL 2%(Clay)</td>
<td>dry</td>
<td>1</td>
<td>2+</td>
</tr>
<tr>
<td>5</td>
<td>Emid 75% liquid</td>
<td></td>
<td></td>
<td>2+</td>
</tr>
<tr>
<td>6</td>
<td>Crag H-1 SES (Sesone) 80% liquid</td>
<td>4</td>
<td>0+</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>NaPCP Gran 15%(Verm.)</td>
<td>dry</td>
<td>6</td>
<td>4-</td>
</tr>
<tr>
<td>8</td>
<td>Crag 974 85 w.p. Gran.</td>
<td>dry</td>
<td>50</td>
<td>2-</td>
</tr>
<tr>
<td>9</td>
<td>Crag 974 85 w.p. Gran.</td>
<td>dry</td>
<td>50</td>
<td>2-</td>
</tr>
<tr>
<td>10</td>
<td>Dinitro 53% liquid</td>
<td></td>
<td></td>
<td>0+</td>
</tr>
<tr>
<td>11</td>
<td>Crag 974 85% w.p. liquid</td>
<td>50</td>
<td>1+</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Chloro IPC 40% liquid</td>
<td></td>
<td></td>
<td>0+</td>
</tr>
<tr>
<td>13</td>
<td>Karmex w.p. 85% liquid</td>
<td></td>
<td></td>
<td>1+</td>
</tr>
<tr>
<td>14</td>
<td>Amino Thiozole 50% liquid</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>Alapun 3+ liquid</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>Na PCP liquid</td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

(1) Average of 3 replication

* Key to Evaluation of Effective Control
0 - no weeds
1 - 20% of area having weeds
2 - 40% of area having weeds
3 - 60% of area having weeds
4 - 80% of area having weeds
5 - 100% of area having weeds

Discussion of Results
The data show that dinitro liquid and granular controlled weeds equally well. The liquid Chloro IPC showed slightly better control than the granular form.

The commercial growers who do not have irrigation systems prefer the use of granular materials. The amateurs like the granulars because of the ease of application.

CHEMICAL WEED CONTROL OF GLADIOLUS
N. W. Butterfield1 and E. C. Gasiorikiewicz2
University of Massachusetts, Waltham Field Station
It is estimated that 400 acres of gladiolus are grown in Massachusetts. The New England Gladiolus Society has 52 members who grow 15,000 corms and up. A large part of the production is marketed within the State. For the past four years, chemical weed control as pre-emergence has been demonstrated at the Waltham Field Station and at 7 of the 14 counties in Massachusetts. The materials that have been safe and fairly successful were Dinitro, CMU, 2,4-D, Chloro IPC and Crag No. 1.
During this past season several new chemicals and a few granular types were compared with the liquid forms at the Waltham Field Station and in the counties. The project of weed control was carried out in cooperation with the project on studies of diseases. The bulbs were donated by B. D. Goss of Acton, Flying Cloud Farms of Acushnet and Champlain Gardens, Burlington, Vt. There were 48 plots 10' x 10' with 16 different treatments, replicated three times. The granular forms were evenly distributed over the soil. All plots received an overhead irrigation for 15 minutes following the application of the chemicals. The treatment rate of application and results are given in the following table:

1 Extension Specialist in Floriculture (2) Asst. Prof. of Botany University of Massachusetts, Waltham Field Station, Waltham, Mass.
NOTICE

We are at all times attempting to keep our addressograph pencils correct. The only way we can accomplish this is with your help. Will you please take a moment to check your name and address as it appears on the envelope in which you received this bulletin? If any corrections are necessary, please drop a post card to your Editor so that a new stencil can be made before the next issue. The next M.F.G.A. bulletin will be in May. We would like to have all necessary corrections by May 1st so that new stencils can be made. Thank you.

NEW MEMBERS

Our Association is growing all the time but we are always in need of new members. If you know of any florist who is not now a member, urge him to join us. A note to either the Secretary or Editor will bring a membership application for your use. Membership in our Association will entitle one to receive 6 issues of the bulletin each year and reduced registration at the two meetings of the Association each year.

Also, if you are now a member and your dues have not yet been paid, send that check at once to insure continued receipt of your bulletin.

INTERRUPTED LIGHTING IMPROVES WINTER STANDARDS

W. E. Duffett
Ohio State Flor. Assoc. Bul. 926, November, 1956

To increase the number of petals in winter-flowered standard chrysanthemums, an interrupted lighting schedule of 9 short days, 12 long days, and short days until flowering is recommended.

Quilling of Indianapolis varieties is increased with temperatures below 60°F.

AIR-CONDITIONED CYCLAMEN

W. W. Willis
Kansas State College Flor. Bul. 33, September, 1956

In a greenhouse section cooled by a fan and pad system, 97 percent of the cyclamen plants survived. Growth of the tops, roots and corms was of an excellent quality. Cooling with fog nozzles resulted in 74 percent survival, but the corms and roots were infected with a fungus disease. Plants in the section without cooling equipment were poor in quality and 64 percent of them survived.

Chemicals Applied June 8 - Data Taken July 5, 1956

<table>
<thead>
<tr>
<th>Code</th>
<th>Treatment</th>
<th>Type</th>
<th>Rate</th>
<th>Weed Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dinitro 12%(Verm.)</td>
<td>dry</td>
<td>6</td>
<td>0*</td>
</tr>
<tr>
<td>2</td>
<td>Dinitro 9%(Clay)</td>
<td>dry</td>
<td>6</td>
<td>0+</td>
</tr>
<tr>
<td>3</td>
<td>Chloro IPC 4%(Clay)</td>
<td>dry</td>
<td>6</td>
<td>0+</td>
</tr>
<tr>
<td>4</td>
<td>Karmex DL 2%(Clay)</td>
<td>dry</td>
<td>1</td>
<td>2+</td>
</tr>
<tr>
<td>5</td>
<td>Emid 75% liquid</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Crag H-1SES (Sesone 30%) liquid</td>
<td></td>
<td>4</td>
<td>0+</td>
</tr>
<tr>
<td>7</td>
<td>Dinitro 53% liquid</td>
<td></td>
<td>405</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Crag 974 85% w.p. Gran. dry</td>
<td></td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>Chloro IPC 40% liquid</td>
<td></td>
<td>6</td>
<td>0+</td>
</tr>
<tr>
<td>10</td>
<td>Karmex w.p. 85%</td>
<td>liquid</td>
<td>1</td>
<td>1+</td>
</tr>
<tr>
<td>11</td>
<td>Crag 974 85% w.p.</td>
<td>liquid</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Chloro IPC 40%</td>
<td>liquid</td>
<td>6</td>
<td>0+</td>
</tr>
<tr>
<td>13</td>
<td>Karmex w.p. 85%</td>
<td>liquid</td>
<td>1</td>
<td>1+</td>
</tr>
<tr>
<td>14</td>
<td>Amino Thiozole 50%</td>
<td>liquid</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>Alanap 3-</td>
<td>liquid</td>
<td>6</td>
<td>1+</td>
</tr>
<tr>
<td>16</td>
<td>Na PCP</td>
<td>liquid</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

(1) Average of 3 replications
* Key to Evaluation of Effective Control
0 - no weeds
1 - 20% of area having weeds
2 - 40% of area having weeds
3 - 60% of area having weeds
4 - 80% of area having weeds
5 - 100% of area having weeds

Discussion of Results

The data show that dinitro liquid and granular controlled weeds equally well. The liquid Chloro IPC showed slightly better control than the granular form.

The commercial growers who do not have irrigation systems prefer the use of granular materials. The amateurs like the granulars because of the ease of application.
Granular grades were safer to apply over foliage for post-emergence weed control. These results suggest that additional research for application of granular materials for post-emergence treatments should be made before recommendations can be disseminated. The following chemicals gave good control of broadleaved weeds, but only partial control of the annual grasses: Dinitro liquid, Dinitro ver., Dinitro Clay, Chloro IPC Granular, Crag Herbicides SES, Chloro IPC Liquid. Size and growth of grass was reduced.

The tests indicate that continued use of Dinitro materials either as liquid or granular can give effective pre-emergence weed control in gladiolus. The next best material in the test was the liquid Chloro IPC. The ease of application of granular materials warrants continued investigation for their development as pre-emergence and post-emergence weed control in gladiolus.

INDEX TO BULLETINS

Bulletin No. 27 - January, 1955
- Page 1 - Winter meeting information
- Page 3 - Program for Winter Meeting
- Page 5 - The Responses of two hybrid varieties of Snapdragon to various times of planting after steam sterilization of a greenhouse soil.

Bulletin No. 28 - March, 1955
- Page 1 - Report of Winter Meeting
- Page 2 - Our New President
- Page 3 - Carnation Timing
- Page 5 - Carnation Night at Univ. of Mass. Studies being made of the Floricultural Industry in Massachusetts

Bulletin No. 29 - May 1955
- Page 1 - Aphids and their Control
- Page 2 - Polyethylene film used as propagation frame for Gardenias
- Page 3 - Malachite Green Dye
 - Copper Dihydrazine Sulfate
- Page 4 - Highlights from Ohio concerning Poinsettias

Bulletin No. 30 - August 1955
- Page 1 - Fall Meeting Information
- Page 2 - Research Committee Meets Poinsettia Culture
- Page 3 - Fall Meeting Program
- Page 4 - Comparative figures on Retail Sales

Bulletin No. 31 - October 1955
- Page 1 - Mist Propagation
- Page 3 - Notes from the Univ. of Massachusetts
- Page 4 - Sphagnum Moss for Plant Propagation
- Page 5 - New Developments in Chrysanthemums