Bulletin 306 Edited by David E. Hartley December 1975 ## Effect of CO₂ Concentrations on Roses: I CO₂ Uptake by Individual Leaves C. J. THOMPSON AND JOE J. HANAN¹ Four CO₂ concentrations of 500, 1000, 1500 and 2500 ppm were studied to determine their effects on the rate of CO₂ uptake by individual leaves of 'Forever Yours' roses. The light intensity at which maximum CO₂ uptake occurred increased up to 1500 ppm CO₂. At lower light levels, CO₂ uptake was enhanced at all levels of CO₂. ## Methods Forever Yours' roses were grown in four individual houses that had CO₂ levels of 500, 1999, 1500 and 2500 ppm under clear day conditions. All other environmental factors were the same. Night temperatures were maintained at 63°F and day temperatures at a minimum of 72°F. Ventilation started at 84°F. The roses were grown directly in the ground and watered, as required, with automatic fertilizer injection. These conditions began Nov. 3, 1974, and ended May 3, 1975. During that period, outside temperatures were so low that little ventilation occurred. A technique described by Aiken (1) was used for measuring CO_2 uptake in individual rose leaves. Essentially, 1 square centimeter of attached, whole leaves was exposed to a known quantity of radioactive CO_2 at the same concentration as in the house. The amount of radioactivity was correlated with the amount of CO_2 taken up by the leaf. All leaves were selected for maximum photosynthesis, accounting for leaf age. Samples were taken on clear, calm days over the full range of light intensities common to Colorado winters. ## Results At any given light intensity, CO₂ uptake was higher with higher CO₂ concentration. The differences were not always significant. The two extremes are shown in Fig. 1. The breaking point appeared to be between 1000 and 1500 ppm CO₂ (Fig. 2). Although there was a definite trend toward higher CO₂ uptake at 2500 ppm, the variability prevented the difference from being statistically significant. This bulletin is published in cooperation with Colorado State University Experiment Station and Cooperative Extension Service. The information given here is supplied with the understanding that no product discrimination is intended and that no endorsement of a product is implied. ¹Graduate assistant and professor. This work supported by a grant from Roses, Inc. Part of the thesis for the M.S. Degree by the senior author. Results emphasize that additional CO₂ is beneficial on roses at any light intensity, and that up to 1500 ppm, the light saturation point — maximum light intensity for maximum CO₂ uptake — also increases. As shown by Aiken, for 500 ppm, the light saturation point was approximately 3300 ft-c. At 1000 ppm, the maximum light intensity was increased to 4600 ft-c., and to 5000 ft-c for both 1500 and 2500 ppm CO₂. In Colorado, it appears that 1500 ppm CO₂ represents the maximum desirable level of CO₂ for maximum CO₂ uptake for 'Forever Yours' under clear day conditions. Fig. 1. Effect of light intensity on CO₂ uptake of individual leaves of 'Forever Yours' roses, maintained at 500 and 2500 ppm CO₂ under clear day conditions. Curves are transposed over a mean of individual data points obtained at different light intensities. The vertical bars show the differences required for statistical significance with a 5% chance of error. Fig. 2. Upper: Mean CO₂ uptake of individual 'Forever Yours' rose leaves at 500, 1000, 1500 and 2500 ppm CO₂, all light intensities combined. Lower: CO₂ uptake of individual rose leaves at light saturation. Vertical bars that do not overlap are statistically significant from each other. Aiken, W. J. 1974. Photosynthesis in roses. I. Effect of light intensity. Colo. Flower Growers Assoc. Bul. 289:1-3.