Midas can be planted closer than can most carnations.

Plant young carnations in benches at a 4 x 5" spacing rather than in pots, and avoid field planting.

Do not allow young plants to become hard before benching, whether they are snaps, carnations, mums or some other crop.

NUTRIENT STUDIES WITH THE POINSETTIA

All poinsettia growers realize the importance of fertilizing poinsettias properly. The following detailed descriptions of the effects of individual nutrients on the poinsettia may be especially interesting at this time of the year. This information is taken from work conducted at the University of Minnesota in recent years.

Nitrogen Deficiency—The foliage is noticeably reduced in size and the rate of plant growth is slower than normal. The lower leaves become pale, then yellow, and drop, while the remainder of the plant will gradually become an overall pale green to yellow color. In severe cases all of the foliage on the plant may be lost. The foliage will sometimes curl upward or downward, lengthwise before dropping, but this curling may also be attributed to other factors. The internodes are appreciably shortened and the plant becomes harder than normal. The greater the nitrogen deficiency, the smaller the red bracts and the slower the rate of development.

Phosphorus Deficiency—The growth rate is usually slowed down and leaf size is reduced before other symptoms appear. New growth may be a darker green than normal. Lower foliage may develop a dull washed-out appearance followed by a yellowing and a relatively quick fall of these leaves. Upward curling of yellowed leaves is sometimes present. The entire plant does not become a yellow-green as in the case with a nitrogen deficiency. It is not uncommon to have occasional green leaves attached to the stem in-between yellow leaves. The green leaves usually turn yellow a week or two later. Bract size is greatly reduced. The stems usually become a purplish-red color, especially on the side facing the sun.

Potassium Deficiency—Potash deficiency symptoms are quite variable and are probably the cause of greater difficulty in poinsettia growing than are deficiencies of other elements. Foliage size and plant growth are reduced but not usually to as great an extent as with a nitrogen deficiency. Perhaps the first noticeable symptom is a somewhat yellow checkered or mottled pattern which develops in portions of leaves near the growing tip. The veins and the largest portion of the leaf will still be a normal green. This symptom is often noticed on poinsettia plants before they are panned. If potash is applied promptly, no dead or necrotic areas will develop.

From October on, when the flower buds have begun to develop, the checkered or mottled pattern may be seen on foliage on the central third of the stem. Once the mottled pattern has appeared, it advances rapidly if no potash is applied to the soil. The leaf will become yellow around the edges, followed by the development of dead areas. Leaf drop may follow. Affected leaves often curl downward. In other instances a fraction of the leaf may become completely yellow while the remainder is completely green out to the margin. The border between green and yellow areas is usually rather abrupt. Another variation may be seen, especially when the red bracts are developing. Necrotic or dead areas will appear on edges of leaves on the central third of the stem in a period of a few days, without being preceded by any of the other visible symptoms. These spots are quite similar to those which develop from sunscald.
Calcium Deficiency—Growth is limited and spindly, the leaves dark green and thin in texture. Petioles become an intense dark red (not purplish) and internodes are short. The foliage is somewhat limp, especially in bright weather. Bract and root development is limited.

Magnesium Deficiency—The first noticeable symptoms are a paleness of the new growth and a reduced growth rate. Later foliage on the lower portion of the plant yellow between the veins not too unlike the pattern with a potassium deficiency. In contrast to potassium deficiency where the yellowing begins on the leaf margin, the margin of the leaf usually remains green in the case of magnesium deficiency. In severe cases and late in the season the leaves develop dry sand colored spots without yellowing first. Leaf loss follows the above symptoms. The leaves usually feel thinner than do those of well fertilized plants.

Excess Fluorine—An appreciable excess of fluorine has no visible effect on the growth of the poinsettia.

HARVESTING, TREATMENT, AND STORAGE OF GLADIOLUS

L. P. Nichols, Plant Pathology Extension, and H. Menusan, Jr., Entomology Extension
The Pennsylvania State College

Proper handling of gladiolus corms after harvest and during storage can eliminate or greatly reduce the disease and insect problem of the gladiolus grower.

Disease Control

Harvesting—In handling corms during and after harvest some wounding and bruising is unavoidable. Since even slight wounds or bruises provide a means of entrance for fungi which may destroy the corms during storage, it is important that proper care be taken during the harvesting operation to avoid injuries. Any badly diseased corms noticed at harvesting time should be picked out and destroyed.

Curing—Prompt drying after digging is important since the rot fungi which gain entrance to the corms through small injuries develop rapidly if the moisture content of the flesh of the corms is high. Corms cured immediately after harvest by placing them in ventilated trays and exposing them to artificial heat at 80°F. for two to three weeks will be very resistant to decay. After curing, the old corms and any adhering soil should be removed.

Corm Treatment—After curing, the corms should be dusted with a mixture of 1 part of Arasan (The dust of Arasan is irritating to some people. A new dustless form, Arasan SF-X, is now available.) plus 1 part of a filler such as DDT dust.

Fumigation of Storage Houses—Storage should be fumigated before the newly harvested corms are placed in them to destroy any rot fungi which may be present from the previous crop. Burning sulfur in a free flame is the most effective method. Seal all cracks and burn 3 pounds of sulfur for each 1,000 cubic feet of storage space. Charcoal soaked in kerosene and burned in metal containers will provide a good flame for igniting the sulfur. Sulfur fumes will blacken lead paint and they are also very irritating to the nose and throat.

Storage—Corms should not be piled deeply in containers. Slatted trays or wire containers to permit the free circulation of air around the corms should be used. If

From Pennsylvania Flower Growers Bulletin, 33, September, 1953