Post Pollination Phenomena in Orchid Flowers

JOSEPH ARDIITI

Department of Organismic Biology, University of California, Irvine, California 92664

1. Our research in this area is supported by grants from the American Orchid Society Fund for Research and Education, and the Office of Naval Research (U.S.); as well as gifts of flowers by Mr. R. I. Norton of the Dos Pueblos Orchid Company, abscisic acid by Dr. S. A. Bellin of the R. J. Reynolds Tobacco Co., actinomycin D by Dr. B. Gall of Merck Sharp and Dohme and cycloheximide by Dr. E. E. Chambers of the Upjohn Co.

2. I would like to thank Mr. R. Ernst for his constant and unstinting help as well as Brigitta Flick and Lynn Wiley for technical assistance. D. C. Jeffrey and R. L. Knauft carried out some of the experiments.

Orchid flowers are not only outstanding in their beauty, but also remarkable in their pollination and evolutionary mechanisms (van der Pijl and Dodson, 1966). Species are generally adapted to very specific pollinators. This requires not only intricate structural adaptations, but also longevity. A short lived flower may simply not be around long enough for its pollinator to visit it. But, even if a flower lived long enough, pollinators may not be attracted to it in the absence of appropriate structure(s), right colour and necessary scents. Producing and maintaining all these is an expensive process in terms of energy utilization. No wonder, then, that orchid flowers have evolved intricate mechanisms for the conservation of energy, utilization of substances from no longer needed flower parts, photosynthesis by flowers before or after pollination, cessation of certain activities immediately after pollination and almost instant wilting.

Perhaps the most important point to remember is that an orchid plant must expend energy to maintain its flowers and produce nectars and/ or scents. Flowers which can contribute to their own upkeep would therefore have an evolutionary or survival advantage. Many orchid flowers are green and it appears that they are coloured by chlorophyll (Arditti, 1966; Arditti and Ducker, 1968; Ducker and Arditti, 1968; Matsumoto, 1966). At least in one instance, green Cymbidium flowers have been shown to be capable of photosynthesis (Arditti and Ducker, 1968; Ducker and Arditti, 1968). This is an interesting adaptation which most probably exists in other green orchids also.

Once a flower has been pollinated its petals and sepals, as such, are of little further use. In most orchids they wilt, eventually dry, and finally abscise or disintegrate. In some orchids old sepals, petals, columns and/or labella (Fig. 1, 2, 3, 4, 5) find a new use following pollination. In Cattleya the sepals, petals and labella are usually lost but the columns may turn green, become fleshy and persist. Phalaenopsis sepals and petals may turn green (Curtis, 1943; Duncan and Schubert, 1943; Ringstrom, 1968; V. Vaughn, personal communication), become fleshy, apparently photosynthesize and as a result contribute to the food supply of the developing seed capsule. Considering the large number of seeds produced by most orchids, energy drain from the plant during seed maturation must be large. The additional photosynthesis is therefore an important adaptive feature.

Once pollination has occurred further maintenance of a flower or production of attractants would constitute an unnecessary waste of energy. Survival of a species requires conservation. It is not surprising therefore, to find that orchids have evolved mechanisms which terminate scent production and cause wilting following pollination. In Trum scale pollination or auxin treatment initiate autocatalytic ethylene evolution which causes the flower to fade (Burg and Dijkman, 1967). Cymbidium and Phalaenopsis flowers begin to senesce following pollination or disturbance of the pollen (Duncan and Schubert, 1943, 1947). Auxins can bring about the same effects in Cymbidium. (Arditti and Knauft, 1969; Burg and Dijkman, 1967; Gessner, 1948; Heslop-Harrison, 1957; Hsiang, 1951a,b; Hubert and Maton, 1939).

Following pollination, the ovary becomes a centre of activity. Ovule development is stimulated (Heslop-Harrison, 1957; Sagawa and Valmayor, 1966) requiring increased amounts
of energy sources, nitrogenous substances, phosphorus and water. The physiological mechanisms of orchid flowers, no doubt due to many years of evolution, are adapted to provide these. After pollination peroxidase activity is initiated (Alvarez, 1968); starch accumulates (Seshagiri, 1941); nitrogenous substances, water, P, and carbohydrates move from the labellum, sepals and petals to the column and ovary (Gessner, 1948; Oertli and Kohl, 1960).

Other changes also take place. Increases in the dry weight of columns and ovaries are accompanied by decreases in sepals, petals and labella

PLATE I.

Fig. 1. Cymbidium Samarkand, exploded view of flower parts (0.41 x).
Fig. 2. Cymbidium Samarkand (0.95 x).
Fig. 3. Cymbidium Samarkand, labellum (0.50 x).
Fig. 4. Cymbidium Samarkand, column and ovary (0.67 x).
Fig. 5. Cymbidium Samarkand, with lanolin applied to stigma, in culture tube (0.39 x) — A-anther cap; C-column; D-dorsal sepal; L-labellum; L-lanolin; O-ovary; PD-pedicel; S-sepal; SC-stigmatic cavity; ST-stigma (Arditti and Knapp, 1969).
This no doubt represents senescence or death of the sepals, petals and labella as well as movement of material into the column and ovary. It also reflects new synthetic activities in the ovary.

Some of the changes which occur in orchid flowers following pollination are visually striking. The column and ovary swell (Fig. 6) while the stigma closes (Fig. 6; Fitting, 1909a, b; Hsiang 1951a, b) and curvature of the pedicle (Fig. 1, 4) changes (Laibach, 1930). A general collapse and wilting of the petalanth can be easily noted (von Marilaun, 1935; Poddubnaya-Arnoldi and Selezea, 1957).

Colour changes also take place following pollination or auxin treatments. Development of chlorophyll in some instances have already been mentioned. In other cases anthocyanins develop following pollination or auxin treatments (Ames, 1947; Arditti and Knauft, 1969; Gessner, 1948; Hsiang, 1951a).

Because the interest in orchids centres primarily on flowers during their prime, post-pollination phenomena have received relatively little attention. Yet, those events are of much importance in the life cycle of orchids. Understanding them better will help us learn more about orchids and increase our knowledge of flower physiology.

LITERATURE CITED

MAMMOTH ORCHID BOOK PUBLISHED

"Australian Indigenous Orchids"

By ALICK DOCKRILL

The definitive new work on native orchids "Australian Indigenous Orchids" is in the last stages of production as this issue of "A.O.R." goes to press. Written by Mr. A. W. Dockrill, late of North Queensland and now Keeper of the Herbarium, Lae, it has been edited by Mr. W. Payne, the editor of "Australian Plants".

A complete copy was not available for review, thus detailed impressions of this massive work cannot be published until the December issue of "A.O.R." However, examination of proofs indicates that it is the most comprehensive coverage of Australian epiphytes and terrestrial orchids ever produced.

The volume comprises 860 crown quarto size pages (trimmed size 9½ x 7¼). There are 29 colour plates and 240 line drawings. The pages are thread sewn, and it has a heavy stock hard cover, cloth covered and printed in gold on the spine.

The jacket is of strong coated paper printed in five colours, with an over-cover in cellophane acetate.

The work commences with an Introduction to the Orchidales, then to assist in bringing larger relationships into perspective it gives keys to families, tribes, and genera. Each is based on different styles of presentation.

Each family, order, tribe, sub-tribe, and genus is described on a right hand page, pertaining to the species to which they refer. Then species are described on left hand pages with appropriate detailed line drawings of each on the right hand side.

The botanical name is followed by economics and synonyms, and a full scientific description with metric sizes.

Distribution and habitat are given in each understood terms.

The masterly touch is a second descriptive section designed for the layman, using common terms and with measurements in inches. Special features of value to the hobbyist reader are covered in this non-technical section.

It is anticipated that copies will be available at the Information Centre, Sixth World Orchid Conference. Price is $18. Orders may be placed for posting.

Orders for this comprehensive work should be mailed, together with cheque, money order or bank draft for $18, to:

Mr. W. Payne,
"Australian Plants",
860 Henry Lawson Drive,
PICNIC POINT, N.S.W., 2213.