The Effect of Gibberellins on Vegetative Growth and Flowering Habit of Geranium

D. Davis, J. Deak and J. W. Rothrock
Merck Sharp and Dohme Research Laboratories
Rahway, New Jersey

Gibberellins have modified a number of growth responses in plants, such as reversal of physiological (Barton, 1956) and genetic (Phinney, 1956) dwarfism, alteration of the low temperature and long day requirement in biennials (Lang, 1956, Wittwer, 1957) and acceleration of the growth cycle (Wittwer, 1957).

This investigation demonstrated the first known instance of an increase in flower size induced by a plant growth regulating substance. Initial greenhouse experiments established the dosage-response relation on vegetative growth in Pelargonium hortorum var. Olympic Red (Table I). Foliage application of gibberellic acid produced internodal elongation, petiole elongation and an increase in leaf size. Slight chlorosis and loss of red zonal coloration on the foliage was noted approximately ten days after treatment. Six to eight weeks after treatment, leaf color was restored to its original condition. The 100 ppm concentration caused excessive legginess and abnormal leaf size and shape. At 10 ppm, the plants were initially leggy; but within six to eight weeks after treatment, they were of good conformation. Wittwer (1957) has reported that in certain crops the ratio of root to shoot growth was decreased with gibberellins. The data in Table I indicate the root to shoot weight ratio is not decreased in geraniums treated with gibberellic acid. An experiment with the White Wonder variety of P. hortorum likewise indicated that root to shoot weight ratio was not decreased ten weeks after treatment with a 10 ppm foliage spray.

TABLE I—The Effect of One Foliage Application of Gibberellins on Vegetative Growth of P. hortorum (var. Olympic Red)

<table>
<thead>
<tr>
<th>Concentration (ppm)</th>
<th>Height (cm)</th>
<th>Root Weight-Shoot Weight Ratio</th>
<th>No. of Breaks per Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>28</td>
<td>0.13</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>0.18</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>39</td>
<td>0.16</td>
<td>3</td>
</tr>
<tr>
<td>100</td>
<td>44</td>
<td>0.13</td>
<td>3</td>
</tr>
</tbody>
</table>

*Plants grown at 58°F night temperatures.

*Measurements made five months after treatment. Four replicates were used per treatment. Root to shoot weight ratio based on fresh weight.

The observed increase in size of the inflorescence is apparently due to a number of factors. There is an elongation of the pedicels in the umbel; second, the petals are enlarged; and, third, preliminary evidence indicates that

(Continued on page 5)
Gibberellins ... continued from page 3

potassium gibberellate reduces the number of aborted flowers. The observations on flower habit were made in three separate experiments. At least five replicates were used in each experiment.

Although the flower buds begin opening at approximately the same time in the control and treated plants, the individual flowers in the inflorescence expand more rapidly in the untreated plants. The petals of the control plants begin to fade by the time the petals on the treated plants are fully expanded. However, the size of the inflorescence on the treated plants is approximately the same as the control plants when the petals on the control plants begin to fade. Thus, the inflorescence on the plants treated with potassium gibberellate is not only larger but also persists ten days longer than the controls. In other floricultural crops where the inflorescence is an umbel, corymb or raceme, potassium gibberellate might be expected to enlarge the inflorescence merely by elongation of the pedicel.

BIBLIOGRAPHY

Barton, Lela V., (1956), Contrib. Boyce Thompson Institute, 18:311-318
Lang, A., (1956), Plant Physiol. Supplement, 31, XXXV.

Committees 1957-'58

President Dan Frederick has appointed the following members to serve on the various committees for 1957-1958:

Education

Arthur Thomas, Syosset, Chairman
A. Marshall Lowman, Jr., Elmira Heights
Charles Wilton, Prattsburg
H. C. VanGinhoven, Babylon
Herbert Forbach, Jr. Buffalo

Industry Affairs

A. Marshall Lowman, Sr., Elmira Heights, Chairman
Paul Newman, Olean
Mel Dauernheim, Wantagh
Curtis Lehde, Buffalo

Bulletin

John Brookins, Orchard Park, Chairman
James McFaul, Port Chester
Donld Phelps, Rochester

Nominating

Thomas Arrigo, Buffalo, Chairman
Frederick Luhman, Millwood
Herbert Grant, Watkins Glen

Public Relations

Donald Phelps, Rochester, Chairman
Joseph Yedowitz, Yonkers
Robert Langhans, Ithaca

Membership

Richard Schloss, New Rochelle, Chairman
Angelo Di Dio, Glens Falls
James McFaul, Port Chester
Raymond Galley, Buffalo
Al Saffer, New York

Coordination of Resources

Charles Smith, Gasport, Chairman
Robert Hollenbeck, Schenectady
Paul Schneeberg, Jr., Sayville

Special Marketing

Paul Schneeberg, Sr., Sayville, Chairman
William Stimming, Newark Valley
Herbert Forbach, Jr., Buffalo
Elwood Reeves, Mattituck

College of Agriculture Liaison

William Stimming, Newark Valley

Special Seed Law

Charles Wilton, Prattsburg, Chairman
Ed Markham, Springwater

Kenneth Post Foundation

Mel Dauernheim, Wantagh, Chairman
Paul Newman, Olean

Group Insurance

John N. Anderson, Buffalo, Chairman
Richard Hart, Rochester